ASSESSMENT OF THE PORTAL VENOUS SYSTEM USING ADVANCED CT TECHNIQUES

Essay
Submitted for fulfillment of Master degree
in Radiodiagnosis

 $\mathcal{B}y$

Asmaa Mohamed Ragab Abd El-Rahman M.B., B.Ch.

Faculty of Medicine – Ain Shams University

Supervised By

Prof. Dr. Hossam Fahmy Abdulhamed

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. Mohamed Sobhi Hassan

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2016

A drowledgement

First and foremost, I would like to thank ALLAH the almighty.

It is a great pleasure to acknowledge my deepest thanks and gratitude to **Prof. Dr. Hossam Fahmy Abdulhamed**, Professor of Radiology, Faculty of Medicine; Ain shams University for his guidance, helpful advice and constructive supervision of this work.

My special thanks and respect for **Dr. Mohamed Sobhi Hassan**, Lecturer of Radiology, Ain shams University
for his true concern and continuous advice which allowed
completion of this work.

My special thanks and deep appreciation for my parents and my family to whom I am overwhelmingly indebted.

Asmaa Mohamed Ragab Abd El-Rahman

Dedication

This humble work is dedicated with love

 \mathcal{J}_{o}

My Parents

The reason of what I become today

Thanks for your support and continuous care.

 \mathcal{J}_{o}

My Kusband and Daughter

I am really grateful to all of you

You have been my inspiration and my soul mates.

Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Radiological anatomy of the portal venous system	5
Principles and technique of MDCT Portography	15
Portal venous system pathological entities	49
Manifestations	73
Summary and conclusion	100
References	102
Arabic Summary	

Tist of Figures

Fig.	Title	Page
1.	Embryologic development of the portal venous system	6
2.	Portal venous system	7
3.	Segmental portal vein radicles and hepatic venous drainage to the I.V.C	8
4.	Post-contrast MD-CT axial images showing normal anatomy of the portal vein	9
5.	Axial MIP post-contrast CT image of the portal vein	10
6.	Type 1 main portal vein branching pattern CT appearance	12
7.	Type 2 main portal vein branching pattern CT appearance	12
8.	Type 3 main portal vein branching pattern CT appearance	13
9.	Development of computed tomography over time. Cross-sectional image of the brain	15
10.	Difference between single-slice CT (SSCT) and MSCT	17
11.	Types of detector arrays	18

12.	Flexible use of detectors in 4-slice MSCT scanners	19
13.	CT images (MPR) of abdominal aorta	32
14.	CTA image (MIP) of right and left common iliac artery	33
15.	CT image (MIP) of the thoracoabdominal aorta and iliac arteries	33
16.	CT image (CPR) of renal artery	34
17.	Anterior (SSD) image of elongated splenorenal varix	35
18.	CTA (VR) images of the vessels in the right side of the groin	36
19.	3D reformatting techniques for 3D MD-CT portal venography	43
20.	The embryonic origin of preduodenal portal vein	51
21.	Different types of congenital extrahepatic portosystemic shunts	52
22.	Pylethrombosis and Cavernous Transformation	60
23.	Post-contrast CT images showing atrophy of the right hepatic lobe	74
24.	Post-contrast CT images showing atrophy of the left hepatic lobe	75
25.	CT image showing preduodenal portal vein and other congenital anomalies	76

26.	Portal vein duplication by CT 77	
27.	CT images showing Abernethy type 1b portosystemic shunt	78
28.	contrast enhanced CT images showing congenital extrahepatic portosystemic shunt	79
29.	CT portal venogram MIP and VR images showing the esophageal and para-esophageal varices	80
30.	CT portal venogram MIP images showing the gastric varices and the splenogastrorenal shunt	81
31.	CT portal venogram MIP images showing the esophageal, peri and para-esophageal varices	81
32.	CT portal venogram MIP and VR images of paraumbilical vein	83
33.	CT portal venogram MIP and VR images showing direct splenorenal shunt	84
34.	CT portal venogram MIP and VR images showing indirect splenorenal (splenogastrorenal) shunt	85
35.	CT portal venogram MIP and images showing indirect splenorenal (splenoadrenal) shunt	85
36.	CE-CT showing rectal varices	86
37.	CT portal venogram MIP and images showing Collateral vessel passing through the greater omentum	87

38.	Coronal contrast enhanced CT images showing malignant related arterioportal shunt	89
39.	CE-CT showing neoplastic arterioportal fistula	90
40.	Portal vein stenosis by CE-CT	91
41.	Portal vein thrombosis by CE-CT	92
42.	Malignant portal vein thrombosis by CE-CT	93
43.	Cavernous transformation of the portal vein by CE-CT	94
44.	Pylephlebitis by CE-CT	95
45.	CT image showing portal venous gas	96
46.	Portal venous system calcification by CT	97
47.	CE-CT images showing portal vein aneurysm	97
48.	Portal venous system aneurysms by CE-CT	98
49.	CT showing iatrogenic injury of extrahepatic portal vein	99

Tist of Table

Table No.	Title	Page No.
1.	Most common branching patterns of intrahepatic portal vein quoted from	11
2.	Parameters for MDCT Portal Venography:	37
3.	Etiological classification of portal hypertension quoted from	55
4.	Factors causing portal vein thrombosis quoted from	61

Tist of Abbreviations

3D	Three dimensional
AV	Azygos vein
CBD	Common bile duct
CE	Contrast enhanced
CECT	Contrast enhanced CT
CE-MDCT	Contrast enhanced multi-detector computed tomography
CEMR	contrast-enhanced MRI
CEPS:	Congenital extrahepatic portosystemic shunt
CM	Contrast Medium
CPR	curved planar reconstruction
CT	Computed tomography
CTA	CT Angiography
GB	Gall Bladder
GT	Gastrocolic Trunk
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HV	Hepatic vein
IMV	Inferior mesenteric vein
LA	Left atrium
LGV	Left gastric vein
LPV	left portal vein

LRV	Left renal vein
MDCT	Multi detector Computed tomography
MIP	maximum intensity projection
MPR	Multiplanar reconstruction
MPV	Main portal vein
MSCT	Multislice CT
NCE	Non-contrast enhanced
PDPV	Preduodenal portal vein
PV	Portal vein
PVP	Portal venous phase
PVS	Portal venous system
PVT	Portal vein thrombosis
RA	Right atrium
RAPV	Right anterior portal vein
RF	Radio frequency
ROI	Region Of Interest
RPPV	Right posterior portal vein
RPV	Right portal vein
SMA	superior mesenteric artery
SMV	Superior mesenteric vein
SplV	Splenic vein
SR	Surface rendering

SSCT	Single-Slice CT
SSD	Shaded surface display
SV	Splenic vein
SVC	Superior vena cava
TACTP	Transarterial CT portography
TIPS	Transjugular intrahepatic portosystemic shun
VR	volume rendering

INTRODUCTION

Abnormalities of the portal venous system are a heterogeneous group of conditions that can cause substantial morbidity, mortality and may lead to complications during surgery or percutaneous interventions involving the portal venous system (*Lee et al.*, 2011).

However, understanding the embryologic development of the normal portal venous anatomy and in anatomic variants is essential to accurately interpret the imaging findings (*Lee et al.*, 2011).

Since most acute hepatic vasculature disorders occur less commonly than disorders affecting the hepatic parenchyma and biliary system, they may be overlooked during routine evaluation of the liver in the acute setting. By considering the imaging findings of disease processes that primarily affect the hepatic veins and portal veins, an anatomy-based approach of acute hepatic vascular diseases can be applied to image interpretation to facilitate diagnosis (*Heller and Hattoum*, 2012).

Computed tomography (CT) permits a comprehensive, noninvasive evaluation of the portal venous system, enabling the detection of both structural and functional abnormalities (*Lee et al.*, 2011).

Introduction of nearly isotropic CT permits excellent anatomical depiction of the portal system in a noninvasive manner (*Aguirre et al.*, 2012).

Advanced CT scanners allow a high-resolution, comprehensive evaluation of the portal vasculature. The advantages of multidetector CT include short acquisition time for a large volume; isotropic acquisition, which allows easy generation of high-resolution angiograms with three-dimensional reconstruction of vascular anatomy for surgical or percutaneous interventional planning; and simultaneous identification of any associated complications (*Lee et al.*, 2011).

Three-dimensional (3D) multi-detector row CT angiography allows improved temporal resolution, as well as, spatial resolution. It clearly demonstrates the vascular anatomy and improves visualization of the collaterals vessels in portal hypertension (*Sugiura et al.*, 2008).

CT angiography for the hepatic arterial tree & portal vein (CT portography) is extremely valuable for applications such as preoperative planning for hepatic resection, preoperative evaluation and planning for liver transplantation, pretreatment planning for patients considered for hepatic arterial infusion chemotherapy, and pre-treatment evaluation of portal vein patency for a variety of reasons. It also helps in the evaluation of vascular anatomical information, vascular invasion of tumors, provide supplemental information in

Introduction

patients with cirrhosis, upper gastrointestinal tract bleeding due to varices, or primary extrahepatic neoplasms (*Murakami* et al., 2005).

Knowledge of the characteristic appearances of abnormalities of the portal venous system allows a more confident diagnosis, permitting timely treatment and more informed guidance of surgical procedures and percutaneous interventions, which may lead to an improved outcome (*Lee et al.*, 2011).