REDUCING AGROCHEMICAL RESIDUES IN GRAPES BY USING DIFFERENT SOURCES FROM BIO AND ORGANIC FERTILIZERS

BY

Magda Naguib Mohammed Abd allah

B. Sc. Agric. (Hort.), Fac. Agric., Ain Shams University, (1999) M.Sc. Agric. (Hort.), Ain Shams University, (2004)

A Thesis Submitted in Partial Fulfillment of The Requirements for the Doctor of Philosophy Degree in Environmental Sciences

Department of Agricultural Science Institute of Environmental Studies and Research Ain Shams University

Approval Sheet

REDUCING AGROCHEMICAL RESIDUES IN GRAPES BY USING DIFFERENT SOURCES FROM BIO AND ORGANIC FERTILIZERS

BY

Magda Nagib Mohamed Abd Allah

Professor of Pomology, Hort. Dept., Fac. Of Agric.,

Ain Shams Univ(superviser).

REDUCING AGROCHEMICAL RESIDUES IN GRAPES BY USING DIFFERENT SOURCES FROM BIO AND ORGANIC FERTILIZERS

BY

Magda Naguib Mohammed Abd allah

B. Sc. Agric. (Hort.), Fac. Agric., Ain Shams University, (1999) M.Sc. Agric. (Hort.), Ain Shams University, (2004)

A Thesis Submitted in Partial Fulfillment of The Requirements for the Doctor of Philosophy Degree in Environmental Sciences

Under the supervision of:

Prof.Dr.Abd El Azeem M. El Hammady

Professor of Pomology, Hort. Dept., Fac. Of Agric., Ain Shams Univ.

Prof.Dr. Nazmy Abd El-Hameed Abdel Ghany

Professor of Pomology, Hort. Dept., Fac. Of Agric., Ain Shams Univ.

Dr. Shawky Mahmoud Sleem

Associcate Prof. of Microbiology Department, Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ghobrial Farag Ghobrial

Professor. of Viticulture, Hort. Res. Institute, Agriculture Research Center.

ABSTRACT

Two field experiments were carried out during 2005, 2006, and 2007 seasons in two private vineyards on Superior grapevines 10 years-old at Cairo- Alexandria desert road. The first one was organically fertilized farm and the second was chemically farm, all agricultural practices were same in the two farms except fertilization. The vines were pruned during the last week of December for the three seasons of this study so as to level 84 buds (7canes X 12 buds/cane) and trellised by the "T" shape system. Vines were planted at 3 x1.5 meters in a sandy soil and irrigated with drip irrigation system at the two farms.

The goal of the two experiments was to study the effect of natural sources of fertilizers: Compost, Phosphorus (rock Phosphate) and Potassium (Feldspar) compared with chemical sources on vegetative growth, microbiological activity in the soil, yield and bunch quality of "Superior" grapevines. The complete randomized block design was adopted for the experiment. First experiment including applying of 4, 6 and 8 kg compost for vine in combination with 200 or 400 g Rock phosphate or Feldspar. Data in this experiment showed that the highest yield was given by vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar, while, the lowest was given by control vines. All physical characteristics of berries (average berry weight, average berry size, average berry length, average berry diameter and average berry firmness) were found to increase with the treatments of vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar, while, the lowest was given by vines control. The treatment of vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar gave the highest values of TSS and TSS / acid ratio and the lowest values of juice acidity. However, the treatment control gave the lowest values of TSS and TSS/acid ratio and the highest values of juice acidity.

All vegetative growth parameters (average shoots length, average number of leaves/shoot, total leaf area/vine and weight of annual prunings) were found to increase with the treatments of vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar. On the other hand, the lowest was obtained with vines control. With respect to leaf content of total chlorophyll, the highest value of this estimate was given by vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar. On other hand, the lowest was given by vines control. The highest value was obtained with the treatments of vines fertilized with 8kg compost + 400g Rock phosphate + 400g Feldspar recorded the highest values of (N, P and K), while, the lowest value was given by vines control.

Additionally, second experiment conducted to study the effect of applying 4, 6 and 8 kg compost / vine on the same pervious characters mentioned in organically farms. Data showed that the highest yield was given by vines fertilized with 8kg compost followed by vines fertilized with 6kg compost. While, the lowest was given by vines fertilized with without compost (control). All physical characteristics of berries (average berry weight, average berry size, average berry length, average berry diameter and average berry firmness) were found to increase with the treatments of vines fertilized with 8kg compost followed by vines fertilized with 6kg compost, while, the lowest was given by vines control.

The treatment of vines fertilized with 8kg compost gave the highest values of TSS and TSS / acid ratio and the lowest values of juice acidity. However, the treatment control gave the lowest values of TSS and TSS/acid ratio and the highest values of juice acidity. All vegetative growth parameters (average shoots length, average number of leaves/shoot, average leaf area/shoot and weight of annual pruning) were found to increase with the treatments of vines fertilized with 8kg compost followed by vines fertilized

with 6kg compost. On the other hand, the lowest was obtained with vines control. With respect to leaf content of total chlorophyll, the highest value of this estimate was given by vines fertilized with 8kg compost followed by vines fertilized with 6kg compost. On the other hand, the lowest was obtained with vines control. The highest value was obtained with the treatments of vines fertilized with 8kg compost recorded the highest values of (N, P and K), while, the lowest value was given by control vines.

Regarding microbiological studies in the organic farm, it showed that the highest total number of microbial count and spore forming at three stages were found with the treatment of (8kg compost + 400g Rock phosphate + 400g Feldspar), followed by treatment (6kg Compost + 400g Rock 400g Feldspar), while, the lowest values was given by vines fertilized without compost (control). While, microbiological in the chemical farm it showed that the highest total number of microbial count and spore forming at three stages were found in at treatment (8kg Compost), followed by treatment (6kg Compost) while, the lowest values was given by vines fertilized without compost (control).

ACKNOWLEDGMENT

First my unlimited thanks to "Allah"

I wish to express my thanks and pay my respect to **Dr. Abd Elazeem Mohammed El Hammady**, professor of Pomology, Horticulture Department, Faculty of Agriculture, Ain Shams University. for his supervision, criticism and all his efforts and huge contribution to the success of this work.

All my regards, thanks and respect to **Dr. Nazmy Abd El Hameed Abd El Ghany**, professor of Pomology, Horticulture Department, Faculty of Agriculture, Ain Shams University. for his supervision guidance.

Deep gratitude is due to **Dr. Shawky Mahmoud Sleem**, assistant professor of Microbiology, Microbiology Dept., Faculty of Agriculture, Ain Shams University. For his supervision, advice and kind encouragement.

I am grateful to **Dr. Ghobrial Farag Ghobrial,** professor of Viticulture, Hort. Res. Institute, Agriculture Research Center, for his constructive supervision, his efforts and sincere assistance during this work. He was as a father to me in all stages of my study like my guiding light.

My deep thanks and gratitude to **Dr. Fouad Fawzy** and **Dr. Farag Mohamed El-Morsi** professors of Viticulture, Hort. Res. Institute, Agriculture Research Center, for their great help during this work and valuable advice.

My heartfull thanks to **Dr. Ahmed Hussein Omar** and **Dr. Aisha Saleh Abd El Rahman,** professors of Viticulture, Hort. Res. Institute, Agriculture Research Center, for their helpful advice during this work.

Special thanks are also due to **Dr. Mohamed Abd El Aziz Abd El Wahab**, Agriculture Research Center, Hort. Res. Institute,
Viticulture Dept., for his great help in preparing, reviewing the
manuscript and statistical analysis for this work results.

I give my love, respect and the best feeling to my family for their support and all they gave me throughout my life.

My best wishes with more health and success to all my friends and to every person who knew the meaning of humanity in this life.

CONTENTS

Pag Pag	ge .
INTRODUCTION	1
REVIEW OF LITERATURE	4
MATERIALS AND METHODS	24
RESULTS AND DISCUSSION	30
* First experiment (Organically treated vineyard)	30
4.1. Effect of compost and natural sources of phosphorus	20
(Rock phosphate) and potassium (Feldspar) on:	30
4.1.1. Yield and cluster characteristics	30
4.1.1.1. Yield/vine	30
4.1.1.2. Number of clusters /vine	32
4.1.1.3. Average cluster weight	35
4.1.1.4. Average cluster length	37
4.1.1.5. Average cluster width	39
4.1.2. Physical characteristics of berries	41
4.1.2.1. Average weight of 100 berries	41
4.1.2.2. Average size of 100 berries	43
4.1.2.3. Average berry length	43
4.1.2.4. Average berry diameter	46
4.1.2.5. Coefficient of berry elongation (L/D ratio)	46
4.1.2.6. Average berry firmness	46
4.1.3. Chemical characteristics of berries	51
4.1.3.1. Total Soluble Solids (TSS)	51
4.1.3.2. Titratable acidity	53
4.1.3.3. TSS / acid ratio	55
4.1.4. Vegetative growth parameters	57
4.1.4.1. Average shoot length	57
4.1.4.2. Average number of leaves/shoot	59
4.1.4.3. Total leaf area/vine	61
4.1.4.4. Weight of prunings(kg/vine)	63
4.1.5. Leaf content of total chlorophyll	65
4.1.6. Leaf content of mineral elements	67
4.1.6.1. Nitrogen	67
4.1.6.2. Phosphorus	69
4.1.6.3. Potassium	71
4.1.7 Microbiological studies	77

4.2. Effect of compost doses	79 79 79 79 81 81 84 87 87 89 89
4.2. Effect of compost and natural sources of phosphorus (Rock phosphate) and potassium (Feldspar)	79 79 81 81 84 84 87 87 89
phosphate) and potassium (Feldspar)	79 79 81 81 84 84 87 87 89
phosphate) and potassium (Feldspar) 4.2.1. Yield and cluster characteristics 7. 4.2.1.1. Yield/vine 4.2.1.2. Number of clusters /vine 4.2.2.3. Average cluster weight 4.2.2.4. Average cluster length 4.2.2.5. Average cluster width 4.2.2. Physical characteristics of berries 4.2.2.1. Average weight of 100 berries 4.2.2.2. Average size of 100 berries 4.2.2.3. Average berry length 4.2.2.4. Average berry diameter 4.2.2.5. Coefficient of berry elongation (L/D ratio) 4.2.2.6. Average berry firmness 4.2.3.1. Total Soluble Solids (TSS) 4.2.3.2. Titratable acidity 4.2.3.3. TSS / acid ratio 9. 4.2.4. Vegetative growth parameters 10. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	79 79 81 81 84 84 87 87 89
4.2.1. Yield and cluster characteristics	79 81 81 84 84 87 87 89
4.2.1.2. Number of clusters /vine	81 81 84 84 87 87 89
4.2.1.2. Number of clusters /vine	81 84 84 87 87 89
4.2.2.4. Average cluster length84.2.2.5. Average cluster width84.2.2. Physical characteristics of berries84.2.2.1. Average weight of 100 berries84.2.2.2. Average size of 100 berries84.2.2.3. Average berry length84.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters16	84 84 87 87 89 89
4.2.2.5. Average cluster width 8 4.2.2. Physical characteristics of berries 8 4.2.2.1. Average weight of 100 berries 8 4.2.2.2. Average size of 100 berries 8 4.2.2.3. Average berry length 8 4.2.2.4. Average berry diameter 8 4.2.2.5. Coefficient of berry elongation (L/D ratio) 9 4.2.2.6. Average berry firmness 9 4.2.3. Chemical characteristics of berries 9 4.2.3.1. Total Soluble Solids (TSS) 9 4.2.3.2. Titratable acidity 9 4.2.3.3. TSS / acid ratio 9 4.2.4. Vegetative growth parameters 10	84 87 87 89
4.2.2.5. Average cluster width 8 4.2.2. Physical characteristics of berries 8 4.2.2.1. Average weight of 100 berries 8 4.2.2.2. Average size of 100 berries 8 4.2.2.3. Average berry length 8 4.2.2.4. Average berry diameter 8 4.2.2.5. Coefficient of berry elongation (L/D ratio) 9 4.2.2.6. Average berry firmness 9 4.2.3. Chemical characteristics of berries 9 4.2.3.1. Total Soluble Solids (TSS) 9 4.2.3.2. Titratable acidity 9 4.2.3.3. TSS / acid ratio 9 4.2.4. Vegetative growth parameters 10	87 87 89 89
4.2.2. Physical characteristics of berries84.2.2.1. Average weight of 100 berries84.2.2.2. Average size of 100 berries84.2.2.3. Average berry length84.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	87 89 89
4.2.2.2. Average size of 100 berries84.2.2.3. Average berry length84.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	89 89
4.2.2.2. Average size of 100 berries84.2.2.3. Average berry length84.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	89
4.2.2.3. Average berry length84.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters16	
4.2.2.4. Average berry diameter84.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters16	89
4.2.2.5. Coefficient of berry elongation (L/D ratio)94.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters16	
4.2.2.6. Average berry firmness94.2.3. Chemical characteristics of berries94.2.3.1. Total Soluble Solids (TSS)94.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	93
4.2.3.1. Total Soluble Solids (TSS).94.2.3.2. Titratable acidity.94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	93
4.2.3.1. Total Soluble Solids (TSS).94.2.3.2. Titratable acidity.94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	96
4.2.3.2. Titratable acidity94.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	96
4.2.3.3. TSS / acid ratio94.2.4. Vegetative growth parameters10	98
4.2.4. Vegetative growth parameters	98
4.2.4.1. Average shoot length	101
4.2.4.1. Average shoot length 10	101
4.2.4.2. Average number of leaves/shoot	101
	101
	105
	107
	107
	107
	110
	110
	117
SUMMARY	119
REFERENCES 12	127
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Physical, chemical and microbiological of the soil analyses for the organically treated vineyard	24
2.	Physical, chemical and microbiological of the soil analyses for the chemically treated vineyard	25
3.	Physical and chemical analysis of the compost	25
4.	Effect of different treatments on yield/vine (Kg) in 2005, 2006 & 2007 seasons	31
5.	Effect of different treatments on average cluster weight (g) in 2005, 2006 & 2007 seasons	34
6.	Effect of different treatments on number of clusters/vine in 2005, 2006 & 2007 seasons	36
7.	Effect of different treatments on average cluster length (cm) in 2005, 2006 & 2007 seasons	38
8.	Effect of different treatments on average cluster width (cm) in 2005, 2006 & 2007 seasons	40
9.	Effect of different treatments on average weight of 100 berries (g) in 2005, 2006 & 2007 seasons	42
10.	Effect of different treatments on average size of 100 berries (cm3) in 2005, 2006 & 2007 seasons	44
11.	Effect of different treatments on average berry length (cm) in 2005, 2006 & 2007 seasons	45
12.	Effect of different treatments on average berry diameter (cm) in 2005, 2006 & 2007 seasons	47
13.	Effect of different treatments on berry shape index in 2005, 2006 & 2007 seasons	48
14.	Effect of different treatments on average berry firmness (g/cm2) in 2005, 2006 & 2007 seasons	49
15.	Effect of different treatments on TSS (%) in 2005, 2006 & 2007 seasons	52

16.	Effect of different treatments on acidity (%) in 2005, 2006 & 2007 seasons	54
17.	Effect of different treatments on TSS/acid ratio in 2005, 2006 & 2007 seasons	56
18.	Effect of different treatments on average shoot length (cm) in 2005, 2006 & 2007 seasons	58
19.	Effect of different treatments on number of leaves/shoot in 2005, 2006 & 2007 seasons	60
20.	Effect of different treatments on total leaf area/vine (m2) in 2005, 2006 & 2007 seasons	62
21.	Effect of different treatments on average weight of prunings/vine (Kg) in 2005, 2006 & 2007 seasons	64
22.	Effect of different treatments on leaf content of total chlorophyll (SPAD) in 2005, 2006 & 2007 seasons	66
23.	Effect of different treatments on nitrogen (%) in 2005, 2006 & 2007 season	68
24.	Effect of different treatments on phosphorous (%) in 2005, 2006 & 2007 season	70
25.	Effect of different treatments on potassium (%) in 2005, 2006 & 2007 season	72
26.	Effect of different treatments on Microbiological activity in organically treated vineyard in 2007 season	78
27.	Effect of different treatments on yield/vine (Kg) in 2005, 2006 & 2007 seasons	80
28.	Effect of different treatments on average cluster weight (g) in 2005, 2006 & 2007 seasons	82
29.	Effect of different treatments on number of clusters/vine in 2005, 2006 & 2007 seasons	83
30.	Effect of different treatments on average cluster length (cm) in 2005, 2006 & 2007 seasons	85
31.	Effect of different treatments on average cluster width (cm) in 2005, 2006 & 2007 seasons	86
32.	Effect of different treatments on average weight of 100 berries (g) in 2005, 2006 & 2007 seasons	88

33.	Effect of different treatments on average size of 100 berries (cm3) in 2005, 2006 & 2007 seasons	90
34.	Effect of different treatments on average berry length (cm) in 2005, 2006 & 2007 seasons	91
35.	Effect of different treatments on average berry diameter (cm) in 2005, 2006 & 2007 seasons	92
36.	Effect of different treatments on berry shape index in 2005, 2006 & 2007 seasons	94
37.	Effect of different treatments on average berry firmness (g/cm2) in 2005, 2006 & 2007 seasons	95
38.	Effect of different treatments on TSS (%) in 2005, 2006 & 2007 seasons	97
39.	Effect of different treatments on acidity (%) in 2005, 2006 & 2007 seasons	99
40.	Effect of different treatments on TSS/acid ratio in 2005, 2006 & 2007 seasons	100
40.	Effect of different treatments on average shoot length (cm) in 2005, 2006 & 2007 seasons	102
42.	Effect of different treatments on number of leaves/shoot in 2005, 2006 & 2007 seasons	103
43.	Effect of different treatments on total leaf area/vine (m2) in 2005, 2006 & 2007 seasons	104
44.	Effect of different treatments on average weight of prunings/vine (Kg) in 2005, 2006 & 2007 seasons	106
45.	Effect of different treatments on total chlorophyll content of leaves (SPAD) in 2005, 2006 & 2007 seasons	108
46.	Effect of different treatments on nitrogen (%) in 2005, 2006 & 2007 seasons	109
47.	Effect of different treatments on phosphorous (%) in 2005, 2006 & 2007 seasons	111
48.	Effect of different treatments on potassium (%) in 2005, 2006 & 2007 seasons	112
49.	Effect of different treatments on Microbiological in chemically treated vineyard in 2007 season	118

LIST OF FIGURES

No.	Title	Page
1.	Relationship between total leaf area (m2) and Yield (kg) as affected by added compost rate and doses of Rock phosphate and Feldspar in three seasons	74
2.	Relationship between total leaf area (m2) and cluster weight (g) as affected by added compost rate and doses of Rock phosphate and Feldspar in three seasons	75
3.	Fig (3): Relationship between total leaf area (m2) and TSS (%)as affected by added compost rate and doses of Rock phosphate and Feldspar in three seasons	76
4.	Relationship between total leaf area (m2) and Yield (kg)as affected by added compost rate	114
5.	Relationship between total leaf area (m2) and cluster weight (g) as affected by added compost rate	115
6.	Relationship between total leaf area (m2) and TSS (%)as affected by added compost rate	116

1- INTRODUCTION

Grape (*Vitis vinifera L.*) is considered the first major fruit crop with regard to its production all over the world. In Egypt, grape ranks second after citrus. The total acreage of grape in Egypt exhibited an obvious increase in the recent few years till it reached 167.048 feddan with a production of 1.531.418 tons according to the latest statistics of Ministry of Agriculture (2008).

Fertilization is considered one of the important practices carried out during the growing season of fruit trees, especially nitrogen, phosphorus and potassium fertilization. Nitrogen is one of the major plant nutrients being a part of proteins, enzymes, amino acids, polypeptides and many other biochemical compounds in the plant system. It is required for the survival and growth of each plant cell (**Mengel and Kirkby, 1987**). N plays an important role in plant life being a constituent of amino acids and proteins, a promoter for cell division and development of meristeniatic tissue (**Nijjar, 1985**).

Phosphorus content of soil can be assimilated only as soluble phosphate. Hence the use of rock phosphate as a fertilizer for phosphorus deficient soils has received a significant interest in the recent years since it is natural, inexpensive and available fertilizer. However the solubilization of this fertilizer rarely occurs in alkaline soils (Caravaca et al., 2005). Physical and chemical weathering of rock phosphate is mainly realized along plant roots in the rhizosphere. This part of soil supports large microbial communities that facilitate weathering of minerals by several mechanisms such as lowering of pH by producing organic acids, phenolic compounds, siderophores, ion chelation and exchange reactions in the growth environment which have been reported to play a role in phosphate solubilization by phosphate solubilizing microorganisms (Drever and Vance, 1994). Numerous studies identified microbial groups which could