

INVESTIGATION OF GEAR PERFORMANCE OF (MLNGPs) AS AN ADDITIVE ON POLYAMIDE 6 (PA 6) SPUR.

By

Esraa Mahmoud Ahmed Mohamed Afifi.

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
IN

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

INVESTIGATION OF GEAR PERFORMANCE OF (MLNGPs) AS AN ADDITIVE ON POLYAMIDE 6 (PA 6) SPUR.

By

Esraa Mahmoud Ahmed Mohamed Afifi.

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

IN

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Prof. Dr. Tarek Abd El Sadek Osman.

Dr. Abou Bakr Hamed ELshalakany.

Professor of Machine Design Engineering Mechanical Design and Production Faculty of Engineering, Cairo University Teacher of Machine Design Production and Printing Technology Akhbar El-Yom Academy

Dr. Hussein Zein.

Assistance Professor of Machine Design Engineering Mechanical Design and Production Faculty of Engineering, Cairo University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

INVESTIGATION OF GEAR PERFORMANCE OF (MLNGPs) AS AN ADDITIVE ON POLYAMIDE 6 (PA 6) SPUR.

By

Esraa Mahmoud Ahmed Mohamed Afifi.

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

IN MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee	
Prof. Dr. Tarek Abd EL Sadek Osman.	(Thesis Main Advisor)
Prof. Dr. Ali Ahmed Mostafa Khattab.	(Internal Examiner)
Prof. Dr. Mostafa Zaki Mohamed Abd El H (Prof. Dr at MSA University)	lady (External Examiner)

Engineer: Esraa Mahmoud Ahmed Mohamed Afifi.

Date of Birth: 17 / 4 / 1990

Nationality: Egyptian.

E-mail: eng.esraa.m.afifi@hotmail.com

Phone.: 01020003380

Address: 6 October City

Registration Date: 1/10/2013

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Design and Production Engineering.

Supervisors: Prof. Dr. Tarek Abd EL-Sadek Osman

Dr. Hussien Zein.

Dr. Abou Bakr Hammed El Shalakany.

Examiners: Prof. Dr. Tarek Abd EL-Sadek Osman. (Thesis Main Advisor)

Prof. Dr. Ali Ahmed Mostafa Khattab. (Internal Examiner)

Prof. Dr. Mostafa Zaki Mohamed (External Examiner)

(Prof. Dr. at MSA University)

Title of Thesis:

"INVESTIGATION OF GEAR PERFORMANCE OF (MLNGPs) AS AN ADDITIVE ON POLYAMIDE 6 (PA 6) SPUR."

Key Words: Polyamide 6 (PA 6), Multilayer Nano Graphene Platelets, Gear Performance.

Summary:

The aim of his study estimated the effects of (MLNGPs) as an additive on Polyamide 6 spur gear performances. These include strength, elastic modulus, thermal stability, dynamic mechanical analysis, moisture absorption, and wear characteristics. The nanocomposites gear was made by melt mixing method and injection molded into thick flanges. The wear experiments were performed using test rig under external torques of 13 and 16 Nm with different concentration 0.1, 0.3 and 0.5 wt% MLNGPs. The result showed tensile strength increased30%, Vickers micro hardness value increased up to 25%, storage modulus E' is increased up to 37% and glass transition temperature is increased up to 14%. On the other hand TGA result shows that the T_{onest} increased up to 7.5% and Td increased up to 2%, and wear decreased by 35% at 16 Nm and 54% at 13 N.m

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor **Prof. Dr. Tarek Osman** for the continuous support of my thesis study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time.

I would like to express my very great appreciation to **Dr.Abou Bakr ELshalakany** for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

I cannot express enough thanks to my committee for their continued support and encouragement: **Dr. Hussein Zein.** I offer my sincere appreciation for the learning opportunities provided by my committee.

Also owe a heavy debt of gratitude **Dr. Bahaa M. Kamel** for their special help and timely support to complete this work.

This work could have been a distant dream if I did not get the moral encouragement and help of my family; they equally shared my success and failures with me.

Finally, I wish to acknowledge and express my deep gratitude to all those who helped me in presenting this work.

Dedication

I sincerely dedicate this work to my mother, father and my husband......

TABLE OF Contents

ACKN	OWLEDGMENTS	1
DEDIC	ATION	III
LIST O	F TABLES	VI
LIST O	F FIGURES	VII
NOME	NCLATURE	IX
ABSTR	ACT	X
CHAPT	TER 1: INTRODUCTION	1
1.1. 1.2.	OBJECTIVE OF THIS STUDY OVERVIEW OF THE THESIS	1
	TER 2 : LITERATURE REVIEW.	
2.1.	LITERATURE REVIEW	
	FER 3 : POLYMER GEAR & GRAPHENE	
3.1.	THERMOPLASTIC AND THERMOSET POLYMER	
3.1.	POLYAMIDE 6 (PA 6)	
3.2.1.	SYNTHESIS OF PA 6.	12
3.2.2.	PROPERTIES	12
3.2.3.	APPLICATION.	13
3.2.4.	LIMITATION	13
3.3.	NANO TECHNOLOGY.	
3.4. 3.5.	GRAPHENESYNTHESIS OF GRAPHENE NANO PLATELETS	
3.6.	GRAPHENE NANO PLATELETS SYNTHESIS	
3.6.1.	MECHANICAL EXFOLIATION OF GRAPHITE	17
3.6.2.	LIQUID PHASE EXFOLIATION	18
3.6.3.	GRAPHENE OXIDE REDUCTION (R-GO)	18
3.6.4.	CHEMICAL VAPOR DEPOSITION (CVD)	20
3.7.	PROPERTIES OF GRAPHENE.	22
3.7.1.	DENSITY OF GRAPHENE	22
3.7.2.	OPTICAL TRANSPARENCY OF GRAPHENE	22
3.7.3.	STRENGTH OF GRAPHENE	22
3.7.4.	THERMAL CONDUCTIVITY OF GRAPHENE	22
3.8.	DISPERSION METHODS	23
3.8.1.	MELT PROCESSING "MELT BLENDING" TECHNIQUE	24
3.8.2.	SOLUTION MIXING "SOLVENT CASTING" TECHNIQUE	24
3.8.3.	IN-SITU POLYMERIZATION TECHNIQUE	25

204	TI DOWN O OPENING THOUSE	•
3.8.4.	ELECTRO-SPINNING TECHNIQUE	
3.8.5.	LAYER BY LAYER TECHNIQUE	. 26
3.9.	FAILURE MODE OF POLYMER GEAR	. 27
CHAPT	ER 4 : EXPERMINTAL PROCEDURES	. 29
4.1.	OVERALL METHODOLOGY	
4.2.	EXPERIMENTAL METHODOLOGY	
4.2.1.	MATERIAL	. 31
4.2.2.	SYNTHESIS OF PA6 AND PA6/MLNGPS FLANGE	. 31
=	2.2.3. CHARACTERIZATIONS OF MLNGPS AND MLNGPS/P	
NANOC	COMPOSITES	. 35
4.2.4.	MECHANICAL PROPERTIES	. 37
4.2.4.1.	TENSILE TESTS	. 37
4.2.4.2.	MICRO HARDNESS TEST	. 38
4.2.5.	THERMAL GRAVIMETRIC ANALYSIS (TGA)	. 38
4.2.6.	DYNAMIC MECHANICAL THERMAL ANALYSIS	. 39
4.2.7.	ELECTRICAL PROPERTIES	. 39
4.2.8.	TRIBOLOGICAL BEHAVIOR USING TEST RIG	40
4.2.9.	WATER ABSORPTION	. 42
CHAPT	ER 5 : RESULTS AND DISCUSSION	43
5.1.	STRUCTURAL CHARACTERIZATION OF MLNGPS	. 43
5.2.	MORPHOLOGICAL AND STRUCTURAL CHARACTERIZATION	
5.3.	MECHANICAL PROPERTIES OF PA 6 AND PA 6/MLNGPS NANOCOMPOSITES.	
5.3.1.	TENSILE AND PROPERTIES	. 45
5.3.2.	MICRO HARDNESS TEST	. 47
5.3.3.	FRACTOGRAPHY.	. 48
5.4.	DMTA.48	
5.5.	THERMAL STABILITY BEHAVIOR	
5.6. 5.7.	X-RAY DIFFRACTION ELECTRICAL PROPERTIES.	
5.7. 5.8.	WATER ABSORPTION	
5.9.	WEAR GEAR TEST OF PA6 AND PA6/MLMGPS NANOCOMPOSITES.	
5.10.	A COMPARISON BETWEEN THIS WORK AND PREVIOUS WORK	
CHAPT	ER 6 : CONCLUSION	. 55

FUTURE WORK 56

List of Tables

Table 3. 1: Thermoplastic and thermoset comparison.	9
	•
Table 4. 1: Characterization of PA6	
Table 4. 2: Characterization of MLNGPs.	31
Table 4.3: MLNGPs different concentration in PA6.	32
Table 4. 4: Elements of the test rig.	41
<u> </u>	
Table 5. 1: Result of tensile test versus different weight of MLNGPs	46
Table 5.2: Dynamic Mechanical Thermal Analysis (DMTA) of PA6 and PA	
nanocomposites	
Table 5. 3: Result of TGA versus different weight of MLNGPs	
Table 5. 4: Water absorption% result of PA6 and nanocomposites	52

List of Figures

Figure 3.1: Synthesis of PA 6	12
Figure 3. 2: Difference between carbon structures of nano filler [32]	14
Figure 3. 3: The size of Nano scale objects and phenomena compared with the	size of
small everyday objects.	
Figure 3. 4: Diamond & Graphite structure [36].	16
Figure 3. 5: Mechanical Exfoliation	
Figure 3. 6: Liquid Phase Exfoliation.	18
Figure 3. 7: Graphene Oxide Reduction [46].	19
Figure 3. 8: Principle of CVD.	20
Figure 3. 9: shows CVD bottom up self-assembly process [47]	21
Figure 3. 10: Quality versus Price for different types of graphene synthesis	21
Figure 3. 11: Melt blending technique.	24
Figure 3. 12: solution mixing method.	25
Figure 3. 13: comparison between, (a) solvent casting, (b) melt blending, and (c) in-situ
polymerization [48]	25
Figure 3. 14: Electro-spinning technique [53]	26
Figure 3. 15: Layer by Layer technique [53]	
Figure 3.16: Typical forms of plastic gear failure [54]	
Figure 3. 17: Tooth root crack observed in nylon 66 gears: (a) optical mic	rograph
showing the crack location and (b) scanning electron micrograph is show	_
tortuous crack path [54]	28
Figure 4. 1: Methodology plane	njection
moldings machine.	
Figure 4. 3: Die design.	
Figure 4.4: production procedure steps.	
Figure 4. 6: High-Resolution Transmission Electron Microscopy (HRTEM)	
Figure 4. 7: Scan Electron Microscopy (SEM).	
Figure 4.8: X-Ray Diffraction (XRD)	
Figure 4. 9: Tensile Test	
Figure 4.10: photos of tensile specimens.	
Figure 4.11: Thermal Gravimetric Analysis.	
Figure 4. 12: RSA-G2 Solid Analyzer instrument	
Figure 4. 13: Broadband dielectric spectrometer.	
Figure 4. 14: test rig component.	
Figure 4.15: Test rig photography.	4.1

Figure 5. 1:TEM image for MLNGP.	43
Figure 5. 2: Electron diffraction of MLNGPs	43
Figure 5.3: XRD of MLNGPs.	44
Figure 5. 4:SEM to investigate the dispersion of MLNGPs on composite a, b) P	A6-0.1
WT%, c) PA6-0.3WT%, d) PA6-0.5WT% and e,f) agglomeration at PA6-0.	3WT%
MLNGPs.	45
Figure 5.5: Tensile stress of PA6 and PA6/MLNGPs nanocomposites	46
Figure 5. 7: Tensile strength (MPa), and (B) Vickers micro hardness	47
Figure 5. 8: (a) SEM Tensile fracture surface analysis of PA6, (b) SEM Tensile f	racture
surface analysis of PA6-0.3 wt. % MLNGPs.	48
Figure 5.9 : (a) The storage modulus E' versus, and (b) The loss tangent tan δ	versus
temperature curve	49
Figure 5.10: (a) TGA curve of PA6/MLNGPs with different load of MLNG	Ps, (b)
DrTGA of PA6/MLNGPs with different load of MLNGPs.:	50
Figure 5. 11:XRD of PA6-0.3WT%MLNGPs nanocomposites	51
Figure 5. 12: Electrical conductivity versus frequency at 30°C and 100°C with d	ifferent
nanocomposites	52
Figure 5. 13: Water absorption%	53
Figure 5.14: Wear rates of PA6 and PA6/MLNGPs spur gear at different torque	53
Figure 5. 15: Comparison of total weight losses between PA6 and PA6/MLN	GPs at
different torque.	54
Figure 5. 16: comparison between this study and previous study	55

Nomenclature

NGPs Nano Graphene Platelets Multi Layered Nano Graphene Platelets **MLNGPs CNTs** Carbon Nanotubes **SWNTs** Single Walled Carbon Nanotubes **MWNTs** Multi Walled Carbon Nanotubes **SEM** Scanning Electron Microscope **TEM** Transmission Electron Microscopy **HRTEM** High Resolution Transmission Electron Microscopy **XRD** X-ray Diffraction Dynamic Mechanical Thermal Analysis **DMTA** Thermal Gravimetric Analysis. **TGA**

Abstract

Over the past decades, the polymer and their composite are chosen to replace metallic material owing to their easy manufacturability, transmit power quietly without lubrication, less weight to power consumption, low operating noise, low cost and durable. Polymer composites have been increasingly applied as chemical industries, structural materials in aerospace, automotive industries and mechanical devices such as photocopier machines, printers, automatic teller machines, food processor and windshield wiper drive.

Now molded plastic gears provide substitute to metal in lightly loaded drives. They transmit power quietly and often without lubrication in numerous applications, furthermore decrease the quantity of parts and oppose chemicals in numerous applications. Before, polymer gears were restricted to 0.25 hp due to varieties in properties and uncertainties about how they react to natural conditions such as moisture, temperature and chemical. Now, better molding controls combined with design practices that more accurately encompass environmental factors have boosted plastic gear drive capacity to 1.5 hp. Using reinforcement this is standout amongst the most practices to enhance the gear performance.

This study investigated the effects of multilayer graphene nanopelatelets (MLNGPs) as an additive on polyamide 6 (PA6) spur gear performances. These include strength, thermal stability, dynamic mechanical Thermal analysis, moisture absorption, and wear characteristics. The nanocomposites gear was made by melt mixing method and injection molded into thick flanges. CNC milling machine used to produce PA6/MLNGPs spur gear. The wear investigations were performed at a speed of 1400 rpm under torques 13 N.m and 16 Nm with different concentration 0, 0.1, 0.3 and 0.5 wt% MLNGPs using test rig. The result showed that 0.3% of MLGNPs is the optimum concentration. Tensile strength increased up to 30%, Vickers micro hardness value increased up to 25%, storage modulus E' is increased up to 37% and glass transition temperature is increased up to 14%. On the other hand TGA result shows that the T_{onest} increased up to 7.5% and Td increased up to 2%, and wear rates decreased by 35% at 16Nm and 54% at 13 Nm.

Chapter 1 : Introduction.

The thermoplastic polymer gear is selected to substitute another metallic in lightly load drives because of the economic gains and their technical advantage. Thermoplastic gears are widely used in mechanical devices such as photocopier machines, printers, automatic teller machines, food processor windshield wiper drives, and even watches. Comparison with metal gear, The polymer gear are able to transmit power quietly, without lubrication application, low specific gravity material, low noise operating, and opposes chemicals in many applications. However, considerations such as; working environment, strength, weight, elastic modulus, thermal expansion, moisture absorption and friction characteristics must be precisely considered when deciding to replace metal with polymer. Despite the advantages of using plastic instead of metal it has drawbacks like strength lower than metal. For instance, bending strength, range in (12000: 450000 PSI), dependent upon specific material. This means larger gears to carry the same load. Gear teeth deflect more under load because they have lower elastic modulus and mesh stiffness. Strength and stiffness change generally with temperature extremes and exposure to water and chemicals. For example, the elastic modulus of plastic drops as much as 60% with a 900° F temperature rise, whereas the modulus of steel remains nearly constant. Nylons lose as much as 50% of their modulus due to it absorb moisture. Gear dimensions also variation with environmental conditions. The thermal expansion coefficient for unreinforced plastics is three to twenty times that of metals. However, certain reinforced plastics offer thermal expansions close to that of metals. The thermal effects of molding, particularly gating and cooling, affect the long term dimensional stability of gears.

1.1. Objective of this study

The main study estimated the effects of multilayer graphene nano platelets (MLNGPs) as an additive on polyamide 6 (PA6) spur gear performances. This study includes thermal stability (TGA), dynamic mechanical thermal analysis (DMTA), strength, elastic modulus, moisture absorption, and wears characteristics. The nanocomposites gear was made by melt mixing method and injection molded into thick flanges. Spur gear produced by using CNC milling machine. The wear investigations were performed at speed of 1400 rpm and under torques 13N.m and 16 N.m with different concentration 0, 0.1, 0.3 and 0.5 wt. % MLNGPs using test rig.

1.2. Overview of the thesis

The thesis is divided into six chapters:

1. **Chapter one**: An introduction of polymer and its application and the objective of this study.

- 2. **Chapter two**: Includes presents a review of related research topics covering areas in polymer gear reinforcements and the different way to study the gear performances.
- 3. **Chapter three**: Discuss the polymer gear behavior and graphene as reinforcement and different technique of dispersion and the types of test rig.
- 4. **Chapter four**: Describes the experimental setup and techniques used in the investigation of gear performance of MLNGPs as an additive on polyamide 6 spur gear.
- 5. **Chapter five**: Discusses the results of the experimental work and the interpretation for the results. The results of characterization of the produced nanocomposites will be demonstrated in this chapter.
- 6. **Chapter six**: Includes the main general discussions are given in this chapter, which is followed by a conclusion and findings from the work and provides suggestions for future work.