Evaluation of Enoxaparin as Low Molecular Weight Heparin versus Standard Unfractionated Heparin in the Treatment of Acute Ischemic Stroke

Thesis

Submitted for the partial fulfillment of the Ph.D. (Philosophy Doctor) Degree in Pharmaceutical Sciences (Clinical Pharmacy)

by

Amal Abd El.Moneim Soliman El.Kholy

Assistant lecturer of Clinical Pharmacy Faculty of Pharmacy Ain-Shams University

Supervised by

Prof. Dr. Abdel-Rehim Morad

Prof. of Clinical Pharmacy and Pharmacokinetics Faculty of Pharmacy Ain-Shams University

Prof. Dr. Samya Ashour Helal

Prof. of Neuropsychiatry Faculty of Medicine Ain-Shams University

Prof. Dr. Mohamed Ayman Saleh

Prof. of Cardiology Faculty of Medicine Ain-Shams University

Prof. Dr. Mona Mohamed Zaki

Prof. of Clinical Pathology Faculty of Medicine Ain-Shams University

Ass.Prof. Nagwa Ali Sabry

Assistant Prof. of Clinical Pharmacy Faculty of Pharmacy Ain-Shams University

> Faculty of Pharmacy Ain-Shams University

تقييم الاينوكسابارين كهيبارين ذو وزن جزيئي صغير بالمقارنة بالهيبارين الغير مجزأ في علاج جلطة المخ

رسالة مقدمة من

الصيدلانية/ امل عبد المنعم سليمان الخولي مدرس مساعد بقسم الصيدلة الاكلينيكية كلية الصيدلة جامعة عين شمس

توطئة للحصول على درجة دكتوراة الفلسفة في العلوم الصيدلية (تخصص صيدلة اكلينيكية)

تحت اشراف

الاستاذ الدكتور/ محمد ايمن صالح استاذ القلب والاوعية الدموية كلية الطب جامعة عين شمس

الاستاذة الدكتورة/ سامية عاشور هلال استاذ الامراض العصبية والنفسية كلية الطب _ جامعة عين شمس

الاستاذ الدكتور/ عبد الرحيم مراد استاذ حركية الدواء والصيدلة الاكلينيكية كلية الصيدلة ـ جامعة عين شمس

الاستاذة الدكتورة/ منى محمد ذكي استاذ التحاليل الطبية كلية الطب ـ جامعة عين شمس

الاستاذة الدكتورة/ نجوى علي صبري استاذ مساعد الصيدلة الاكلينيكية كلية الصيدلة - جامعة عين شمس

كلية الصيدلة جامعة عين شمس ٢٠٠٨

ट्योजीयां ट्रं

"هالوا سبحانك لا علم النا إلا ما علمتنا إنك أنت العليم الحكيم"

سورة البقرة الآية ٣٢

Acknowledgement

I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deepest gratitude and profound thanks to professor **Dr. Abdel-Rehim Morad**, Prof. of Clinical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Ain-Shams University for his sincere help, and continuous support. He devoted a lot of his precious time for supervision, valuable guidance and continuous encouragement in completing this work.

I am particularly thankful to Professor **Dr. Mohamed Ayman**Saleh Prof. of Cardiology, Faculty of Medicine, Ain-Shams University,
for his indispensable guidance in choosing, initiating, and supervising this
work particularly in the clinical aspect of the study.

I do feel greatly indebted to Professor **Dr. Samya Ashour Helal**Prof. of Neuropsychiatry, Faculty of Medicine, Ain-Shams University,
for her great help in the clinical aspect of the study.

I would like to express my great thanks to Professor **Dr. Mona**Mohamed Zaki Prof. of Clinical Pathology; Faculty of Medicine, AinShams University, for her guidance, great help and much support in directing this work.

I am especially grateful to Assistant Prof. **Dr Nagwa Ali Sabry**Assistant Prof. of Clinical Pharmacy, Faculty of Pharmacy, Ain-Shams
University, for her great assistance and kind guidance during the progress of this work and in writing the thesis.

My appreciation and thanks to Professor Dr. Osama Ahmed Badary, Professor of Pharmacology and Toxicology and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, for his kind assistance and encouragement.

Finally, I wish to express my thanks to my father, mother, husband and all staff members of Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University for their valuable assistance, cooperation and advice during the study.

LIST OF ABBREVIATIONS

ACCP	American College of Chest Physicians.
ACE	Angiotensin Converting Enzyme.
ADP	Adenosine Diphosphate.
AF	Atrial Fibrillation.
ALT	Alanine aminotransferase.
Anti-IIa	Anti-factor IIa.
Anti-Xa	Anti-factor Xa.
aPTT	Activated Partial Thromboplastin Time.
ARBs	Angiotensin II Receptor Blockers.
AST	Aspartate aminotransferase
AT	Antithrombin.
CAPRIE	Clopidogrel versus Aspirin in Patients at Risk of
	Ischemic Events.
CAST	Chinese Acute Stroke Trial.
CHRISMA	Clopidogrel for High Atherothrombotic Risk and
	Ischemic Stabilization, Management, and Avoidance.
CT	Computed Tomography.
CVA	Cerebrovascular Accident.
Da	Dalton.
DVT	Deep Venous Thrombosis.
E	Electronic potential.
ECG	Electrocardiography.
EDTA	Ethylene Diamine Tetracetic Acid.
ELISA	Enzyme Linked Immuonosorbant Assay.
ESPS-7	European Stroke Prevention Study-7.
FISS	Fraxiparin International Stroke Study.
FRISC-II	Fragmin and Fast Revascularization During Instability in
	Coronary Artery Disease.
GHAT	The German Hip Arthroplasty Trial.
GP\b	Glycoprotein Ib.
H ₇ O ₇	Hydrogen Peroxide.
HAEST	Heparin in Acute Embolic Stroke Trial
HIT	Heparin-Induced Thrombocytopenia
HMG-CoA	Hydroxyl Methyl Glutaryl Co-enzyme A.

HRP	Horseradish-Peroxidase.
HTN	Hypertension.
INR	International Normalized Ratio.
ISE	Ion Selective Electrode.
IST	International Stroke Trial.
IV	Intravenous.
JNC ^V	Joint National Committee ^V .
KCCT	Kaolin Cephalin Clotting Time.
LDL	Low Density Lipoprotein.
LIFE	Losartan Intervention for Endpoint Reduction in the
	Hypertension Study.
LMWHs	Low Molecular Weight Heparins.
MI	Myocardial Infarction.
MRI	Magnetic Resonance Imaging.
MW	Molecular Weight.
NIHSS	National Institutes of Health Stroke Scale.
NINDS	National Institute of Neurological Disorders and Stroke.
NSTEMI	Non-ST Elevation Myocardial Infarction.
O.D.	Optical Density.
PBS	Phosphate Buffered Saline.
PE	Pulmonary Embolism.
PF ²	Platelet Factor [£] .
RCTs	Randomized Controlled Trials.
rt–PA	Recombinant Tissue Plasminogen Activator.
S.E.M.	Standard Error of Mean.
SD	Standard Deviation.
STEMI	ST Elevation Myocardial Infarction.
SYNERGY	The Superior Yield of the New strategy of Enoxaparin,
	Revascularization and Glycoprotein IIb/IIIa inhibitors.
THRIFT	Thromboembolic Risk Factors.
TIAs	Transient Ischemic Attacks.
TMB	Tetramethylbenzidine.
TOAST	The trial of (ORG \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
TOPAS	Therapy of Patients with Acute Stroke.
t–PA	Tissue Plasminogen Activator.
TRACE	Treatment with Anticoagulants in Cerebral Events.

TXA	Thromboxane A ^۲ .
UFH	Unfractionated Heparin.
Vs	Versus.
VTE	Venous Thromboembolism.
\mathbf{vWF}	von Willebrand Factor.
vWF: Antigen	von Willebrand Factor Antigen.
$\Delta \mathbf{vWF}$	Change in von Willebrand Factor Level.

LIST OF TABLES

No.	Table	Page
Table (1)	Risk factors in ischemic stroke.	17
Table (Y)	Common patterns of neurological impairments among patients with acute ischemic stroke.	۲.
Table (*)	National Institutes of Health Stroke Scale.	77
Table (4)	Immediate diagnostic studies: Evaluation of a patient with suspected acute ischemic stroke.	74
Table (°)	Inclusion and exclusion criteria for thrombolytic therapy in acute ischemic stroke.	۸۲
Table (٦)	Base-line characteristics of the studied patients on admission.	۸۳
Table (∀)	The incidence of risk factors for stroke in the studied patients.	Λź
Table (^)	The relation between the number of risk factors and the incidence of stroke.	٨٥
Table (4)	Changes in the neurological condition during hospitalization regarding NIHSS.	۸٧
Table('')	The effect of UFH and Enoxaparin on the neurological outcome at the end of hospitalization using NIHSS.	٨٨
Table(\\)	The change in systolic and diastolic blood pressure (on admission, after [£] hrs and at the end of hospitalization).	٩.
Table(\ \ \ \)	The effect of anticoagulant therapy on the systolic blood pressure.	91
Table(\\mathbf{T})	The effect of anticoagulant therapy on the diastolic blood pressure.	97
Table(\\\\\\\\)	The effect of UFH administration on activated partial thromboplastin time (aPTT) after 7, 17 and 75 hours.	9 £
Table(10)	The effect of Enoxaparin treatment on the antifactor-Xa values in patients.	90
Table(17)	The incidence of value aPTT or Anti-Xa within, below and above the therapeutic range at the beginning and at the end of the treatment period.	97
Table(\\)	The effect of UFH and Enoxaparin on the platelet count (Per $ml \times 1 \cdot r$).	99
Table(\\\)	The effect of UFH and Enoxaparin treatment on the liver enzymes (AST, ALT) level.	1

Table(14)	The effect of base-line characteristics of the Enoxaparin	١٠٣
	patients on the percentage release of von Willebrand	
	$(\Delta vWF\%)$.	
Table(Y)	The effect of base-line characteristics of the Heparin patients	1.4
	on the percentage release of von Willebrand ($\Delta vWF\%$).	
Table(Y1)	The effect of UFH and Enoxaparin on vWF (%) release.	١٠٤
Table(YY)	The relation between ΔvWF (%) and the change in the	١٠٦
	neurological outcome in Enoxaparin group.	
Table(۲۳)	The relation between ΔvWF (%) and the change in the	١٠٦
	neurological outcome in UFH group.	
Table(Y &)	Adverse clinical outcome of anticoagulant therapy during	11.
	hospitalization.	

LIST OF FIGURES

No.	Figure	Page
Fig. (\)	Classification of stroke according to the causative	0
	mechanism with estimates of the frequency of various	
	categories of abnormalities.	
Fig. (7)	Time course of cerebral ischemic events.	٧
Fig. (")	Arteries of the anterior and posterior cerebral	٩
	circulation in relation to the circle of Willis.	
Fig. (4)	Main arterial blood supply to the brain.	٩
Fig. (*)	Arterial lesion in atherosclerosis.	10
Fig. (7)	Coagulation process (Platelet activation,	١٦
	adhesion, aggregation and coagulation cascade)	
Fig. (V)	Pathogenesis of ischemic neuronal death.	١٨
Fig. (\(\)	The Y-D and Y-D structure of heparin.	٤٠
Fig. (4)	Catalysis of antithrombin-mediated inactivation of	٤٣
	thrombin or factor Xa by unfractionated heparin or	
	low-molecular-weight heparins	
Fig.(\\\\)	The non-linear pharmacokinetics of heparin.	٤٤
Fig.(\ \ \ \)	The chemical structure of Enoxaparin.	0 2
Fig (' ' ')	Relation between the number of risk factors and	Λo
	the incidence of stroke.	
Fig. (۱ ۳)	Changes in the neurological condition during	۸Y
	hospitalization regarding NIHSS.	
Fig.(\\\xi)	The effect of UFH and Enoxaparin on the	$\lambda\lambda$
	neurological outcome at the end of	
	hospitalization.	
Fig.(\o)	Blood pressure changes during hospitalization.	٩ ٠
Fig.(\7)	The effect of anticoagulant therapy on the	91
	patients' systolic blood pressure.	
Fig.(\ \ \ \ \ \)	The effect of anticoagulant therapy on the	97
	patients' diastolic blood pressure.	
Fig.(\\\)	The effect of UFH on activated partial	9 £
	thromboplastin time (aPTT) after 7, 17 and 75	
	hours.	
Fig.(\4)	The effect of Enoxaparin treatment on the	90
J \ /	antifactor-Xa level in patients.	

Fig.(Y·)	The incidence of value aPTT or Anti-Xa within,	97
_	above and below the therapeutic range at the	
	beginning and at the end of the treatment period.	
Fig.('\')	The effect of UFH and Enoxaparin on platelet	99
	count.	
Fig.(YY)	The effect of UFH and Enoxaparin on liver	1 • 1
	enzymes (AST, ALT) level.	
Fig.(۲۳)	The effect of UFH and Enoxaparin on vWF	1 • £
	release.	
Fig.(Y £)	The relation between ΔvWF (%) and the change	1.٧
	in the neurological outcome.	
Fig.(Yo)	The Adverse clinical outcome of anticoagulant	111
_	therapy at the end of hospitalization	

Abstract

The significance of low-molecular-weight heparins (LMWHs) in the management of acute stroke remains controversial. Previous randomized controlled trials (RCTs) have demonstrated superiority of LMWHs over unfractionated heparin (UFH), in the setting of acute ischemic stroke, as to the likelihood of occurrence of deep vein thrombosis, but there are too few data to provide reliable information on their effects on other important outcomes, including death and intracranial hemorrhage. Previous randomized trials have enrolled patients within ' days of the onset of an acute ischemic stroke. However, few if any data exist on the neurological outcomes in patients with stroke in evolution presenting within hours of symptom onset. The current study aims at assessing whether the early administration (in patients with stroke in evolution) of potentially more intensive antithrombotic therapy with Enoxaparin might reduce the risk of early recurrent ischemic strokes, death, and disability compared with UFH.

One hundred patients with acute ischemic stroke in evolution were enrolled (with symptoms of stroke within eight hours of randomization). Patients were randomized to receive UFH [o... IU by IV bolus, followed by a continuous IV infusion] or Enoxaparin [o.e. mg per kilogram body weight subcutaneously every of hours]. All patients received one or aspirin daily. Therapy with UFH and Enoxaparin was continued for one days. The plasma concentrations of von Willebrand factor antigen were measured on admission and after one of hours. National Institutes of Health Stroke Scale (NIHSS) and Computed Tomography

(CT) imaging of the brain were performed in all patients at the time of admission and at regular intervals.

The mean baseline NIHSS was $9,12 \pm 2,2$ among patients randomized to UFH, vs. $9.7\% \pm 7.\%$ among patients randomized to Enoxaparin $(p > \cdot, \cdot \circ)$. At discharge, the mean NIHSS showed a statistically significant difference in favor of the Enoxaparin group ($^{\vee}$. $^{\circ}\pm$ ξ , for the UFH arm versus ξ , 97 \pm 7, λ for the Enoxaparin arm; $p < \cdot$, $\cdot \circ$). The mean NIHSS after therapy in patients who demonstrated neurological improvement was $\circ, \tau \pm \tau, \tau$ in the UFH arm, as opposed to $\Upsilon, \Upsilon \pm \Upsilon, \Upsilon$ in the Enoxaparin arm $(p < \cdot, \cdot \Upsilon)$. A deterioration in the clinical neurological condition (progressive stroke symptoms) inspite of treatment UFH treatment arm and ξ (n= 4) of the patients in the Enoxaparin treatment arm $(p < \cdot, \cdot)$. No statistically significant differences were observed for pulmonary embolism, deep venous thrombosis, recurrent strokes, or death. The mean baseline percentage value for von Willebrand r, o i in the Enoxaparin group $(p > \cdot, \cdot \circ)$. The mean percentage value for von Willebrand factor antigen after [£] hours of initiation of the study drug was $\Upsilon \vee \Upsilon, 9 \pm \cdot, 99$ in the UFH group, as opposed to $\Lambda \wedge \xi \cdot \Lambda \pm \cdot, \forall$ in the Enoxaparin group $(p < \cdot, \cdot)$.

<u>Conclusion:</u> Enoxaparin was superior to UFH in reducing adverse neurological outcome after acute ischemic stroke in evolution. This superiority was not associated with reductions in mortality, and could be explained by blunting of von Willebrand factor release by Enoxaparin.

<u>Key words</u>: Ischemic stroke, stroke in evolution, heparin, UFH, LMWHs, Enoxaparin, von Willebrand factor.