

Ain Shams University Faculty of Engineering Electronics and Communications Department

Data Converters For High Speed Serial Links

A thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Khaled Mohamed Ashraf Mohamed Alaa El-Din El-Gammal B.Sc. of Electrical Engineering (Electronics and Communications Department) Ain Shams University, 2011

Supervised by
Prof. Dr. Hani Fikry Ragai
Dr. Sameh Assem Ibrahim

Cairo, 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Data Converters For High Speed Serial Links

by

Khaled Mohamed Ashraf Mohamed Alaa El-Din

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

EXAMINERS' COMMITTEE

Name and Affiliation	Signature
Prof. Elsayed Mostafa Saad	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Helwan University.	
Prof. Hany Fikry Ragai	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Ain Shams University.	
Prof. Mohamed Amin Dessouky	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Ain Shams University.	

Date: 23 / 4 / 2016

Curriculum Vitae

Name: Khaled Mohamed Ashraf Mohamed Alaa El-Din

Date of Birth: 24/10/1989

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: 2011

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Khaled Mohamed Ashraf Mohamed Alaa El-Din

Date: 23 / 4 / 2016

Contents

Lis	st of	Tables		1	
Lis	st of	Figures		2	
Αŀ	strac	ct		5	
Αc	know	vledgme	ents	7	
Lis	st of	Abbrev	iations	9	
1	1.1 1.2		nation	11 11 12	
2	Ove 2.1		n Time-Interleaved ADCs and Literature Survey Basics	13 13 13	
	2.2	2.1.2	Quantization	14 15	
	2.3		ADC Overview	18 18 21	
	2.4	ADC I 2.4.1 2.4.2	Performance Metrics	21 22 23	
	2.5	State 6 2.5.1 2.5.2	of the art survey	25 26 27	
		2.5.3 2.5.4 2.5.5 2.5.6	TI-ADC with Non-Uniform Reference Distribution [Chen 12]. Dual-path receiver for 10-Gbps Multi-Standard Serial I/O [Zhang 1.6-Gsps SAR ADC with Embedded Equalization [Tabasy 12] 24-Gsps SAR ADC with Embedded Equalization [Schvan 08].	29	30
	26	2.5.7 Summe	Look-Ahead Pipeline ADC with Embedded DFE [Varzaghani 09]	35 37	

Contents

3	Syst	tem Le	evel Design	41
	3.1		ver Chain	
	3.2	ADC	Topology Selection	42
	3.3	Noise	$Budgeting \dots \dots$	43
		3.3.1	Sample and Hold	44
		3.3.2	Reference Ladder	44
		3.3.3	Reference Voltage	45
		3.3.4	Comparator	46
		3.3.5	Noise Budgeting	
		3.3.6	Time Interleaving Effects	48
	3.4	ADC	Target Specifications	
	3.5		vioral Modeling	
	3.6	Summ	nary	51
4	Circ	uit Im	plementation and Simulation Results	53
	4.1		Design Approach	53
		4.1.1	Modified Clocking Scheme	
		4.1.2	Sample and Hold (S/H)	56
		4.1.3	Comparator	57
		4.1.4	Reference Ladder	
		4.1.5	Thermometer to Binary Decoder	
		4.1.6	TI-ADC Simulations	
		4.1.7	Drawbacks	65
	4.2	Secon	d Design Approach	66
		4.2.1	Clocking Scheme	
		4.2.2	Sample and Hold (S/H)	66
		4.2.3	Comparator	67
		4.2.4	Reference Ladder and Thermometer to Binary Decoder	
		4.2.5	TI-ADC Simulations	
		4.2.6	Physical Design	74
		4.2.7	Receiver Chain Simulations	
		4.2.8	Multi-Standard Simulations	76
	4.3	Summ	nary	77
5	Con	clusion	ns and Suggestions for Future Work	81
	5.1	Concl	usions	81
	5.2	Sugge	stions for Future Work	81
Pι	ublica	ntions		83
Bi	bliog	raphy		85

List of Tables

2.1	State-of-Art TI-ADCs Summary	39
3.1	ADC Specifications	49
	ADC Power Consumption Details	
4.2	ADC PVT Results	65
4.3	ADC Power Consumption Details - Second Design Approach	73
4.4	ADC PVT Results - Second Design Approach	74
4.5	Comparison of this Work with Recently-Published ADCs	79

List of Figures

2.1	Sampling in time domain (a) and frequency domain (b) [Spelgatti 10]	14
2.2	3-bit I/O characteristics and quantization noise [Spelgatti 10]	15
2.3	Time-Interleaved Architecture [Jiang 13]	16
2.4	Time-Interleaving Non-idealities [Jiang 13]	17
2.5	Flash ADC Topology	19
2.6	Conventional Clocking Scheme	22
2.7	FFT of Input Sinusoid	23
2.8	Ideal versus Real ADC Characteristics [Spelgatti 10]	24
2.9	FOM versus Sampling Rate [Chen 10]	25
	Receiver Chain [Harwood 07]	26
2.11	AFE with Digital Equalization and Timing Recovery [Cao 10]	28
2.12	Receiver Chain Analog-Front-End [Chen 12]	29
2.13	Dual-Path Receiver AFE [Zhang 15]	31
2.14	TI-ADC Implementation [Tabasy 12]	34
2.15	TI-ADC Implementation [Schvan 08]	34
2.16	TI-ADC with Embedded DFE [Varzaghani 09]	37
3.1	An ADC-Based-Equalizer Receiver	41
3.2	Complete Receiver Chain	42
3.3	S/H Thermal Noise	
3.4	Reference ladder thermal noise	
3.5	Reference buffer thermal noise	46
3.6	Comparator thermal noise	47
3.7	Noise Budgeting	48
3.8	TI-ADC Simulink testbench	49
3.9	TI-ADC Simulink FFT Spectrum	50
3.10	ENOB versus Comparator Input Noise	50
3.11	ENOB versus Comparator Input Offset	51
4.1	Flash ADC Conventional Clocking Scheme	54
4.2	S/H outputs using conventional clocking scheme	
4.3	Modified clocking scheme	
4.4	SubADC linearity versus comparator clock delay	
4.5	S/H Implementation [Dessouky 01]	56
4.6	Comparator Architecture	
4.7	Comparator Preamplifiers	
4.8	Comparator Latches	60

4.9	Comparator Overdrive Recovery	61
4.10	Comparator Ramp Test	61
4.11	First Design Approach - SubADC DNL Results	63
4.12	First Design Approach - SubADC INL Results	63
4.13	TI-ADC FFT Spectrum	64
4.14	TI-ADC FOM Relative to State-of-Art ADCs [Murmann 15]	64
4.15	SubADC Power Consumption	65
4.16	Clocking Scheme - Second Approach	66
4.17	S/H Implementation - Second Approach	67
4.18	Proposed Comparator Preamplifiers - Second Approach	68
4.19	Comparator Input Referred Noise - Second Approach	69
	Comparator Overdrive Recovery - Second Approach	69
	Comparator Input Ramp Test - Second Approach	70
	Second Design Approach - SubADC DNL Results	71
4.23	Second Design Approach - SubADC INL Results	71
	TI-ADC FFT Spectrum - Second Design Approach	72
4.25	TI-ADC FOM Relative to State-of-Art ADCs - Second Design Ap-	
	proach [Murmann 15]	72
	SubADC Power Consumption - Second Design Approach	73
	TI-ADC FFT Spectrum (Transient Noise) - Second Design Approach	73
	SubADC Layout - Second Design Approach	75
4.29	Channel Response	75
4.30	ADC Power Consumption versus Input Data Rate	76
4.31	1	77
4.32	ADC Optimum Number of Channels versus Input Data Rate	77

Abstract

Khaled Mohamed Ashraf Mohamed Alaa El-Din El-Gammal "Data Converters For High Speed Serial Links", Master of Science dissertation, Ain Shams University, 2016.

This thesis presents a high speed ADC, to be used as an analog-front-end in an digital receiver chain, in serial link applications. The use of digital equalizers in the receiver chain provide higher programmability. Thus, it can equalize high-attenuation channels.

Digital Equalizers can be easily scaled with different technology nodes. Thus, using digital equalizers is preferred in serial link receivers. This increases the interest in high-speed, low-power ADCs to be used in the receiver front-end.

The high-speed ADC, discussed in this thesis, eliminated the need for any digital calibration. This is done while acheivieng a competitive FOM, when compared to state-of-art ADCs.

Two design appproaches are shown in this thesis, each is clearly discussed with its advantages and drawbacks. A full-system analysis, is also shown, in terms of noise budgeting for each subblock, along with speed and linearity requirements.

The first design approach, utilized the usage of a modified clocking scheme, to simplify the design of main ADC subblocks such as: boot-strapped sample-and-hold, and preamplifiers, and comparator latch. This acheived a superior FOM of 115 fJ/conversion-step, and a power consumption of 13 mW from 1.2V supply. This design had some drawbacks, which will be further discussed. These drawbacks are solved in the second design approach.

The second design approach, used the conventional clocking with a modified bootstrapped sample-and-hold, and comparator preamplifiers. This enabled to solve the drawbacks of the first design, acheiving an INL and DNL of less than 0.5LSB, and a FOM of 182 fJ/conversion-steps. This design consumes 23 mW from 1.2V supply. A comparison is made between the ADC performance metrics of this ADC, and the state-of-art ADCs stated in the survey.

Key words: Analog-to-digital conversion, clocking scheme, time-interleaved ADC, flash ADC, comparators, clock delay, sample-and-hold.