

Recent Concepts in Supraglottic Airway Devices

Essay

Submitted for Partial Fulfillment of Master Degree in Anesthesia

Bγ Moataz Mohamed Mohamed Abuali

M.B, B.Ch.

Faculty of Medicine- Ain Shams University

Supervised by

Prof. Dr. Amir Ibrahim Mohamed Salah

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

Dr. Mohamed Mohamed Nabil El Shafei

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

Dr. Eman Abubakr Elsiddik Ahmed Bayumi

Lecturer in Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain -Shams University

> Faculty of Medicine Lin Shams University 2016

First of all, I wish to express my sincere thanks to **GOD** for his care and generosity throughout my life.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Amir Ibrahim Mohamed Salah,** Professor of Anesthesia, Ain Shams University for his faithful supervision and guidance.

I am also deeply indebted to **Dr. Mohamed Mohamed Nabil El Shafei,** Assistant Professor of
Anesthesia, Ain Shams University for his great support
throughout the whole work.

I would like to express my great thanks to **Dr. Eman Abubakr Elsiddik Ahmed Bayumi,** Lecturer of Anesthesia, Ain Shams University for the tremendous effort she has done in the meticulous revision of this work.

At last, I am indebted for my family.

Tist of Contents

Subject	Page No.
List of Abbreviations	i
List of Figures	iv
List of Tables	v
Introduction	1
Aim of the Work	4
Anatomy of the Airway	5
Use of supraglottic airway devices maintainance airway patency and its recorde in anaesthesia	ent
Summary	111
References	114
Arabic Summary	

Tist of Abbreviations

Abb.	Full term		
AIC	Aintree intubating catheter		
AMD	Airway management device		
ASA	American Society of Anesthesiologists		
BMI	Body mass index		
CI-CV	Cannot intubate- Cannot mask ventilate		
COPA	The cuffed oropharvngeal airway		
CPAP	Continous positive airway pressure		
ETT	Endotracheal tube		
FIS	Flexible intubating scope		
GERD	Gastroesophageal reflux disease		
ID	Intubating device		
ILA	Intubating laryngeal airway		
IV	Intravenous		
LMA	Laryngeal mask airway		
LTS	Laryngeal tube suction		
NMBAs	Neuromuscular blocking agents		
PCV	Pressure controlled ventilation		
PEEP	Positive end expiratory pressure		
PLA	Perilaryngeal airway		
PPIs	Proton pump inhibitors		
PPV	Positive pressure ventilation		
PSV	Pressure support ventilation		
SAD	Supraglottic airway device		
SGAs	Supraglottic airways		
SLIPA	Streamlined pharynx airway liner		

Tist of Figures

Figure No	. Title	Page No.
Fig. (1):	The Human Airway	5
Fig. (2):	Sagittal section in Nasal Cavity, M	Iouth,
	Pharynx and Larynx	6
Fig. (3):	Anatomy of the mouth	10
Fig. (4):	Anatomy of the airway	10
Fig. (5):	Front view of the mouth showing To	ongue,
	Hard and Soft palate	10
Fig. (6):	Anatomy of Pharynx	11
Fig. (7):	Anatomy of Larynx	14
Fig. (8):	Larynx "top view"	18
Fig. (9):	Anterior, posterior and sagittal view	ws of
	larynx	21
Fig. (10):	Laryngeal cartilage "front view"	23
Fig. (11):	Ligaments of the larynx	27
Fig. (12):	Extrinsic muscles of the larynx	31
Fig. (13):	Intrinsic muscles of the larynx	33
Fig. (14):	Trachea, Bronchi and Bronchopulm	onary
	segments	38

Tist of Figures (Cont....)

Figure No	. Title	Page No.
Fig. (15):	Face masks. A, Ambu transparent ma	sk B,
	Adult black rubber mask	41
Fig. (16):	Oropharyngeal airway	42
Fig. (17):	Nasopharyngeal airway	43
Fig. (18):	Artificial airways	45
Fig. (19):	Cuffed oropharyngeal airway "COPA	46
Fig. (20):	Structure of the cuffed orophary	ngeal
	airway	46
Fig. (21):	Ideal position of the cuffed orophaty	ngeal
	airway	47
Fig. (22):	Classic Laryngeal Mask Airway (LMA
	Classic TM).	52
Fig. (23):	Types of LMA Flexible TM	54
Fig. (24):	Insertion Technique of LMA Intub	ating
	Laryngeal Mask Airway (LMA
	Fastrach TM)	56
Fig. (25):	Intubating Laryngeal Mask Airway (LMA
	Fastrach TM)	57
Fig. (26):	LMA Fastrach TM Family	58

Tist of Figures (Cont....)

Figure No	. Title Pag	je No.		
Fig. (27):	Insertion and Intubation with LMA			
	Fastrach TM	59		
Fig. (28):	Gastric Laryngeal Mask Airway (LMA			
	ProSeal TM).	62		
Fig. (29):	Insertion Techniques of LMA ProSeal TM	64		
Fig. (30):	g. (30): Intubating Laryngeal Mask Airway (LMA			
	CTrach TM).	66		
Fig. (31):	Ambu Aura	68		
Fig. (32):	Air Q	68		
Fig. (33):	I GEL	70		
Fig. (34):	Airway management device	71		
Fig. (35):	Esophageal-Tracheal Combitube	72		
Fig. (36):	Laryngeal tube	75		
Fig. (37):	Pharyngeal Airway Xpress	76		
Fig. (38):	Glottic Aperture Seal Airway (Soft			
	Seal®).	77		
Fig. (39):	Perilaryngeal Airway (Cobra PLA®)	78		
Fig. (40):	Streamlined Pharynx Airway Liner			
	(SLIPA®).	80		
Fig. (41):	ASA algorithm of difficult intubation	95		

Tist of Tables

Table No.	Title	Page No.
Table (1):	Appropriate-Size Selection and Maxi	mum
	Cuff Inflation Volumes of classic LMA	52
Table (2):	LMA Fastrach TM Selection Guidelines	s60
Table (3):	Cobra PLA® Selection Guidelines	79

Introduction

The fundamental responsibility of an anesthesiologist is to maintain adequate gas exchange. In order to do this, the airway must be managed in such a way that it is almost continuously patent. Failure to maintain a patent airway for more than a few minutes results in brain damage or death. Thus, it is not surprising that more than 85% of all respiratory-related closed malpractice claims involve a brain damaged or dead patients.

It has been estimated that inability to successfully manage very difficult airways has been responsible for as many as 30% of deaths totally attributable to anesthesia. In any patient, the greater the degree of difficulty in maintaining airway patency the greater the risk of brain damage or death (Miller, 2000).

William Maceven first performed tracheal intubation 140 years ago in a patient who had a large tumour in his oropharynx. Several more years would elapse before this technique became a routine procedure during general anesthesia. Although a large number of individuals contributed to the evolution of this technique, two very important events sparked the routine use of endotracheal

anesthesia; the introduction of Macintosh laryngoscope and the neuromuscular blocking agent (Benumof, 1994).

The wide variety of airway devices available today may broadly be classified as intraglottic and extraglottic airway devices, which are employed to protect the airway in both elective as well as emergency situations.

Supraglottic airway devices are widely used in the pre-hospital environment because of their simplicity, speed of insertion, and efficacy. Some argue the term extraglottic airway device is more appropriate since portions of many of the devices lie below the level of the glottis. Regardless, and in the interest of simplicity, this article will use the term supraglottic airway device (SAD) to describe the family of orally inserted devices whose distal end lies in the hypopharynx or esophagus (**Brimacombe, 2004**).

One of the first SADs to come on the market was the Laryngeal Mask Airway (LMA), invented by an anesthesiologist named Archie Brain in England. Brain was attempting to find a handsfree approach to ventilation that did not involve inserting a tube into the patient's trachea.

Other SADs like laryngeal tube and Cobra perilaryngeal airway were also used. Then they developed rapidly to seconed generation like Proseal LMA, i-gel,

Supreme LMA and Laryngeal tube suction mark II (Cook and Howes, 2011).

From the 1st guidelines on the management of airway that were published by the American Society of Anesthesiologists (ASA) in 1993 till the last one several types of airway devices were included. Together with other devices that have been developed in the past years represent an important subject that an anesthesiologist should know.

Therefore, the aim of this essay is to identify and discuss the upper airway anatomically and physiologically, knowing the different methods and scores used for evaluating the airway and review supraglottic airway devices properties then show their uses in different aspects in anaesthesia.

Aim of the Work

The aim of the work is to identify and discuss the larynx physiologically and anatomically and review supraglottic airway devices properties then show their uses in different aspects in anaesthesia.

Chapter (1):

Anatomy of the Airway

The human airway could be divided by an imaginary line passing through the larynx at the level of the vocal cords into upper airway including "oral and nasal cavities, pharynx and supra-glottic part of the larynx" and lower airway including "sub-glottic part of the larynx, trachea, right and left main bronchi and bronchopulmonary segments (Hutton, 2002).

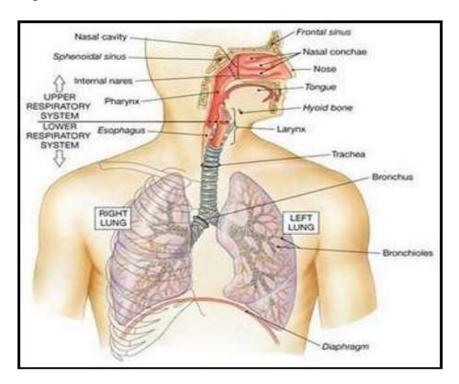
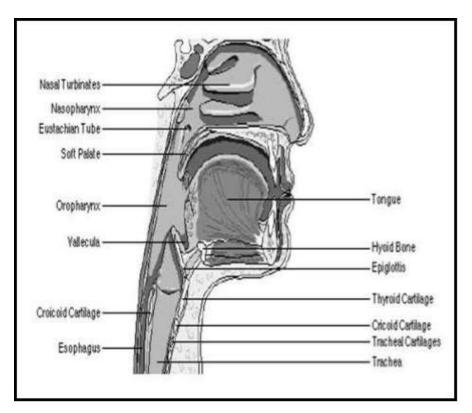



Figure (1): The Human Airway (Hutton, 2002).

A) The Upper Airway:

There are two openings to the human airway, the nose and the mouth. The former leads to nasopharynx and the latter leads to oropharynx. They are separated anteriorly by palate, but joined posteriorly at the base of the tongue where the epiglottis prevents aspiration by covering the glottis during swallowing (**Hutton, 2002**).

Figure (2): Sagittal section in Nasal Cavity, Mouth, Pharynx and Larynx (**Hutton, 2002**).