SERUM CONCENTRATIONS OF CA-125 IN NORMAL AND PREECLAMPTIC PREGNANCIES

Thesis

Submitted for the Partial fulfillment of Master Degree in Obstetrics and Gynecology

Presented By

Ahmed Aziz Brekaa

M.B., B.Ch. Tanta University (2005) Resident in Tanta General Hospital

Under Supervision of

Prof. Dr. Helmi Motawe El-Sayed

Professor of Obstetrics and Gynecology

Faculty of Medicine – Ain Shams University

Dr. Mohamed El-Mandooh Mohamed
Assistant Professor of Obstetrics and Gynecology
Faculty of Medicine – Ain Shams University

Dr. Sherif Fathi El-Mekkawi Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgement

No words can fulfill the feeling of gratitude and respect I carry for *Professor Dr. Helmi Motawe El-Sayed* for his patient guidance, enthusiastic encouragement and useful critiques of this research work.

I would like to express my great appreciation to *Dr. Mohamed El-Mandooh Mohamed* for his professional guidance, valuable support and useful and constructive recommendations on this project with a scientific personality and a kind heart.

I would like to express my deep gratitude and respect to *Dr. Sherif Fathi El-Mekkawi* for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

Finally, I wish to thank my family for their support and encouragement throughout my study.

Ahmed Aziz Brekaa

ABSTRACT

Aim: This prospective study aims to investigate the serum concentrations of CA-125 in normal and preeclamptic pregnancies and thus to specify the value of this biochemical marker in prediction and diagnosis of preeclampsia.

Methods: This study reviews a total of 72 primigravid women with singleton pregnancy. These participants were categorized into two groups: control (n = 36) and preeclampsia (n = 36).

Results: Serum CA-125 concentrations were found to correlate positively with diastolic blood pressure (r = 0.345, P-value < 0.001) and maternal age (r = 0.052, P-value = 0.002) but no significant correlation was found with systolic blood pressure, platelet count and gestational age at time of delivery. When the cut-off point for serum CA-125 concentration was accepted as 51.38 IU/ml, the sensitivity and specificity of this biochemical marker were, respectively, 63.9% and 97.2% for the detection of preeclamptic pregnancies. On the other hand, positive and negative predictive values for CA-125 were 95.8% and 72.9%, respectively.

Conclusion: This study suggests that CA-125 is a biochemical marker which reflects the underlying inflammatory process in preeclampsia.

Keywords: CA-125 – Preeclampsia – Pregnancy

LIST OF CONTENTS

		Page No.
*	<u>List of Figures</u>	i
*	<u>List of Tables</u>	iii
*	<u>List of Abbreviations</u>	V
*	Protocol of Thesis	
*	<u>Introduction</u>	1
*	Aim of Work	3
*	Review of Literature	4
	o Preeclampsia	4
	• Classification and Terminology	4
	• Incidence	10
	Risk Factors	12
	Pathophysiology	20
	Pathology	38
	• Diagnosis	46
	Prediction	51
	o CA-125	72
*	Patients and Methods	82
	Results	
*	<u>Discussion</u>	99
*	Summary	
	Conclusion	
	References	
	Arabic Summary	

LIST OF FIGURES

Figure No.	<u>Page No.</u>
Figure (1):	Difference in trophoblastic invasion and arteriolar remodeling between normal and preeclamptic pregnancies
Figure (2):	Schematic representation of the proposed initiating events and factors in the pathophysiology of preeclampsia
Figure (3):	Shows high resistance uterine artery Doppler at 23 weeks with increased S/D ratio and diastolic notching
Figure (4):	PIGF and sVEGFR-1 concentrations trends during pregnancy
Figure (5):	The relationship between log ₁₀ free fetal DNA concentration and gestational age in normal pregnancy
Figure (6):	The relationship between Log ₁₀ free fetal DNA concentrations in pregnancies with preeclampsia and fetal growth restriction59
Figure (7):	Serum concentrations of hCG, hCG-h and their ratio during pregnancy

Figure (8):	Comparison of maternal age (years) between preeclampsia group and normal group	90
Figure (9):	Comparison of gestational age at time of delivery (weeks) between preeclampsia group and normal group	91
Figure (10):	Comparison of systolic blood pressure (mmHg) between preeclampsia group and normal group	92
Figure (11):	Comparison of diastolic blood pressure (mmHg) between preeclampsia group and normal group	93
Figure (12):	Comparison of platelet count (x 1000/mm3) between preeclampsia group and normal group	94
Figure (13):	Correlation between serum CA-125 level and diastolic blood pressure	95
Figure (14):	Correlation between serum CA-125 level and maternal age	96
Figure (15):	Comparison of serum CA-125 level (IU/ml) between preeclampsia group and normal group	97
Figures (16)	and (17): Receiver operating characteristics of CA-125 for preeclampsia	98

LIST OF TABLES

Table No.	able No. Page No.	
Table (1):	Conditions associated with high levels of CA- 125	
Table (2):	Comparison of maternal age (years) between preeclampsia group and normal group90	
Table (3):	Comparison of gestational age at time of delivery (weeks) between preeclampsia group and normal group91	
Table (4):	Comparison of systolic blood pressure (mmHg) between preeclampsia group and normal group	
Table (5):	Comparison of diastolic blood pressure (mmHg) between preeclampsia group and normal group	
Table (6):	Comparison of platelet count (x1000/microliter) between preeclampsia group and normal group94	
Table (7):	Correlation between serum CA-125 level as the main parameter of study and other parameters including all cases95	

List of Tables

Table (8):	Comparison of serum CA-125 level (IU/ml)	
	between preeclampsia group and normal	
	group	97
Table (9):	Receiver operating characteristics of CA-125	
	for preeclampsia	98

LIST OF ABBREVIATIONS

AaAcute atherosis
ACOGAmerican College of Obstetricians and Gynecologists
Ang-1Angiopoietin-1
Ang-2Angiopoietin-2
Ang-IIAngiotensin II
AT1-AAAngiotensin II type 1 receptor autoantibody
AT1-ABAngiotensin II type 1 receptor antibody
BKCa ⁺⁺ Large conductance calcium-activated potassium channels
BMIBody mass index
BPBlood pressure
CA-125Cancer Antigen-125
COCarbon monoxide
CRPC-reactive protein
CTComputed Tomography
DICDisseminated intravascular coagulation
ET-1Endothelin-1
ffDNAFree fetal DNA
FSHFollicle stimulating hormone
GAWSGenome-wide association screening
GFRGlomerular filtration rate
GWLSGenome-wide linkage analyses
hCGHuman chorionic gonadotropin
hCG-hHyperglycosylated human chorionic gonadotropin
hCG-αAlpha subunit of human chorionic gonadotropin

List of Abbreviations

hCG-βBeta subunit of human chorionic gonadotropin **HELLP**Hemolysis, elevated liver enzymes, low platelet count **HO-1**Heme oxygenase-1 system IBIInter-birth interval **IGF**Insulin-like growth factor **IGFBP**Insulin-like growth factor binding protein ILInterleukin IUFDIntrauterine fetal demise **IUGR**Intrauterine growth restriction kDaKilodalton **LH**Luteinizing hormone **MELD**Model for End-Stage Liver Disease MRIMagnetic resonance image NONitric oxide OROdds Ratio PAI-1Plasminogen activator inhibitor-type 1 PAPP-APregnancy-associated plasma protein-A **PCR**Polymerase chain reaction PEPreeclampsia PIPulsatility index **PIGF**Placental growth factor **RBF**Renal blood flow RIResistive index **ROS**Reactive oxygen species RRRisk Ratio RUPPReduced uterine perfusion pressure

List of Abbreviations

Siglec-9	Sialic acid-binding Ig-like lectin-9
sFlt-1	Soluble fms-like tyrosine kinase-1
SRD	Serous retinal detachment
sTie-2	Soluble endothelial cell-specific tyrosine kinase receptor-2
STOX-1	Storkhead box-1
sVEGFR-1	Soluble vascular endothelial growth factor receptor-1
ΓNF	Tumor necrosis factor
ГSH	Thyroid stimulating hormone
VEGF	Vascular endothelial growth factor
WHO	World Health Organization

SERUM CONCENTRATIONS OF CA-125 IN NORMAL AND PREECLAMPTIC PREGNANCIES

Protocol of Thesis

Submitted for the Partial fulfillment of Master Degree in Obstetrics and Gynecology

Presented By

Ahmed Aziz Brekaa

M.B., B.Ch. Tanta University (2005) Resident in Tanta General Hospital

Under Supervision of

Prof. Dr. Helmi Motawe El-Sayed

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mohamed El-Mandooh Mohamed

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Sherif Fathi El-Mekkawi

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

Introduction

Preeclampsia complicates 3–5% of all pregnancies in the world. It is associated with hypertension and proteinuria existing after the 20th week of pregnancy. Many risk factors such as primigravida, younger age and twin pregnancy have been identified. The main consequence of placental ischemia is the generalized endothelial dysfunction, which is responsible for clinical symptoms and complications (e.g. eclampsia, placental abruption and HELLP syndrome) (*Cisse et al.*, 2004).

The diagnosis of gestational hypertension is made when blood pressure reaches 140/90 mmHg or greater for the first time after mid-pregnancy in absence of proteinuria. Almost half of these women subsequently develop preeclampsia syndrome, which includes signs such as proteinuria and thrombocytopenia or symptoms such as headaches or epigastric pain. Gestational hypertension is reclassified as transient hypertension if evidence for preeclampsia does not develop, and the blood pressure returns to normal by 12 weeks postpartum (*Chesley*, 1985).

Proteinuria is the surrogate marker that defines the endothelial leak which characterizes the preeclampsia. Even so, when blood pressure increases, it's dangerous to both mother & fetus to ignore this sign because proteinuria

has not yet developed. It is important to know that 10% of eclamptic seizures develop before overt proteinuria is identified (*Chesley*, 1985).

Proteinuria is defined by 24 hour urinary protein excretion exceeding 300 mg, a urine protein/creatinine ratio of 0.3, or persistent 30 mg/dL (1+ dipstick) protein in random urine samples (*Lindheimer et al.*, 2008).

CA-125 (Cancer Antigen-125 or Carbohydrate Antigen-125) is a large molecule mostly consisting of highly glycosylated glycoproteins. It is exposed in amnion & its derivatives of fetal coelomic epithelia (as Mullerian epithelia, peritoneum, pleura and pericardium) & in many adult tissues (as epithelium of the fallopian tubes, endometrium, endocervix, pleura and peritoneum) (*Kabawat et al. 1983*).

The normal endometrium produces CA-125 and this production can contribute significantly to the level of circulating CA-125 at the time of menstruation. During peritoneal irritation (ovarian hyperstimulation syndrome, salpingitis, ruptured ectopic pregnancy and laparotomy), peritoneally derived CA-125 significantly contributes to circulating CA-125 concentrations, giving elevated CA-125 values (*Bischof et al.*, *1986*).

Protocol of Thesis

In pregnant women, the CA-125 levels are increased reaching highest levels during the first trimester. The values typically decrease during the late first trimester and should remain below 35 IU/ml of serum until delivery. In some instances the maternal serum CA-125 remains within normal values (0-35 IU/ml) throughout uncomplicated pregnancies (*Kenemans et al.*, 1993).