

The Effect of two Different Enamel Bleaching Techniques on the Bond Strength of Orthodontic Brackets (An In-Vitro Study)

A Thesis

Submitted to the Faculty of Dentistry
Ain Shams University
In partial fulfillment of the Requirements for Master
Degree in **Orthodontics**

By

Rania Mohamed Mohamed Mohy El Din

B.D.S (2006)

Ain Shams University-(Egypt)

Faculty of Dentistry Ain-Shams University (2014)

Supervisors

Dr. Khaled Fawzy

Professor of Orthodontics
Faculty of Dentistry
Ain-Shams University

Dr. Ibrahim Negm

Lecturer of Orthodontics
Faculty of Dentistry
Ain-Shams University

I would like to express my deepest gratitude to **Prof. Dr. Khaled Fawzy**, Professor of Orthodontics, Department of Orthodontics, Faculty of Dentistry, Ain Shams University for his great guidance and support, and also for giving me the chance to achieve my goal of becoming an orthodontist.

Words fail to express my sincere thanks and appreciation to **Dr. Ibrahim Mazen**, Lecturer of Orthodontics, Department of Orthodontics, Faculty of Dentistry, Ain Shams University for his valuable efforts in supervising my work.

———— Rania Mohamed To

My

Great

Family

Thank You

List of Contents

Title	Page
List of contents	I
List of figures	II
List of tables	V
List of abbreviations	VI
I-Introduction	1
II-Review of Literature	2
III-Aim of the study	36
IV-Materials and Methods	37
V-Results	66
VI-Discussion	90
VII- Summary	103
VIII-Conclusions	105
IX-Recommendations	106
X-References	107
XI-Appendix	
XII-Arabic summary	

List of Figures

Fig. No.	Title	Page
1	Schematic representation of the sample grouping	41
2	40% HP in-office bleaching jet mix syringes	43
3	20% At-home bleaching gel	44
4	Stainless steel premolar brackets with a mesh base	45
	of 80 micro-etched gauge	
5	Light cured adhesive system	46
6	Diagrammatic representation of mixing in-office	51
	bleaching gel	
7	The testing machine connected to a computer	56
8	A specimen fixed to the testing machine	56
9	Stereomicroscope	58
10	Sputter Coater Machine	62
11	Scanning Electron Microscope	63
12	Bar chart representing mean shear bond strength	68
	values of the three subgroups	
13	Survival probability versus shear load for the tested	70
	subgroups	
14	Bar chart representing mean (ARI) values of the	72
	three subgroups	
15	Adhesive Remnant Index scores distribution	75
	frequencies for the experimental subgroups	

List of Figures (Cont.)

Fig.	Title	Page
16	Examples of stereomicroscope photos for different	76
	Adhesive Remnant Index scores; a: Score 0; no	
	adhesive left on enamel. b : Score 1; less than 50%	
	of the adhesive remained on the enamel surface. c ,	
	Score 2: more than 50% of adhesive remained on	
	enamel surface. d: Score 3; all the adhesive	
	remained on the enamel surface with impression of	
	the bracket base. e: EF; enamel fracture occurred	
	during debonding	
17	Bar chart representing prevalence of enamel fracture	77
	in the three subgroups	
18	Scanning electron micrograph showing enamel	79
	section of subgroup 1b at 500x magnification	
19	Scanning electron micrograph showing enamel	79
	section of subgroup 1b at 2000x magnification	
20	Scanning electron micrograph showing enamel	81
	section of subgroup 2b (In-office bleached) at 500x	
	magnification	
21	Scanning electron micrograph showing enamel	81
	section of subgroup 2b (In-office bleached) at 2000x	
	magnification	
22	Scanning electron micrograph showing enamel	83
	section of subgroup 3b (At-home bleached) at 500x	
	magnification	

List of Figures (Cont.)

Fig.	Title	Page
23	Scanning electron micrograph showing enamel	83
	section of subgroup 3b (At-home bleached) at 2000x	
	magnification	
	Scanning electron micrograph showing resin tags of	85
24	unbleached enamel at 500x magnification	
	Scanning electron micrograph showing resin tags of	85
25	unbleached enamel at 2000x magnification	
	Scanning electron micrograph showing resin tags of	87
26	subgroup 2b (In-office bleached) at 500x	
	magnification	
	Scanning electron micrograph showing resin tags of	87
27	subgroup 2b (In-office bleached) at 2000x	
	magnification	
	Scanning electron micrograph showing resin tags of	89
28	subgroup 3b (At-home bleached) at 500 x	
	magnification	
	Scanning electron micrograph showing resin tags of	89
29	subgroup 3b (At-home bleached) at 2000x	
	magnification	

List of Tables

Table. No.	Title	Page
1	Mean, standard deviation values and results of ANOVA test for comparison between shear bond strength of the subgroups	68
2	Weibull modulus, characteristic stress and stress for 10 and 90 per cent probability failures and survival probability at 8 MPa	70
3	Mean, standard deviation values and results of Kruskal-Wallis test	72
4	Adhesive Remnant Index scores for the tested subgroups	74
5	Percentages of enamel fractures and results of chi-square test for comparison between the three subgroups	77

List of Abbreviations

ANOVA	Analysis Of Variance
ARI	Adhesive Remnant Index
CP	Carbamide Peroxide
HP	Hydrogen Peroxide
m	Weibull modulus
MPa	Mega Pascal
NGVB	Nightguard Vital Bleaching
OTC	Over The Counter
PF	Potassium Fluoride
S_0	Characteristic strength
SBS	Shear bond strength
SEM	Scanning Electron Microscope
SD	Standard Deviation

Introduction

Enamel bleaching became one of the most popular patient requested procedures in dentistry. Teeth bleaching tend to improve self-image of both younger and older populations. After an increased demand for adult orthodontics, orthodontists faced patients who were not satisfied with proper occlusion only, but also asked for whiter teeth ¹.

In-office and At-home vital bleaching techniques with various whitening agents gained a worldwide acceptance among clinicians and patients. Many orthodontic patients might have bleaching done at home or might be interested in having their teeth bleached in office at the time of orthodontic treatment.

Several controversies surrounded the exact nature of how bleaching products worked and their effect on both enamel surfaces and bond strength of orthodontic brackets. The variety of conclusions published concerning the bleaching effects on the bond strength of orthodontic brackets suggested the need for more work.

Review of Literature

The presented review of literature was divided to cover three main topics; teeth bleaching, bonding orthodontic brackets to bleached enamel surfaces and factors affecting in-vitro testing of the bond strength of orthodontic brackets.

I. Teeth bleaching

i. Evolution of teeth bleaching

ii. Bleaching chemistry and mechanism

- a. Bleaching chemistry
- b. Bleaching mechanism

iii. Factors affecting teeth bleaching outcomes

- a. Type of the bleaching agent
- b. Concentration and time
- c. Heat and light
- d. Other factors

iv. Bleaching techniques

- a. At-home bleaching (Nightguard vital bleaching)
- b. In-office bleaching
- c. Over-The-Counter bleaching

II. Bonding orthodontic brackets to bleached enamel

- i. Effect of bleaching techniques on bond strength of orthodontic brackets
 - a- In-office bleaching technique
 - b- At-home bleaching technique
- ii. Theories explaining the effects of bleaching on the bond strength of orthodontic brackets
 - a. Changes in the enamel structure theory
 - b. Residual oxygen theory

III. Factors affecting in-vitro testing of the bond strength of orthodontic brackets

- i. Enamel origin
- ii. Storage medium and duration
- iii. Orthodontic brackets
- iv. Testing technique
 - a. Type of loading force
 - b. Force application method
 - c. Cross-head speed of the testing machine

I. Teeth Bleaching

i. Evolution of teeth bleaching

An attractive smile plays a major role in the overall perception of physical attractiveness. The increased demand for improved esthetics made teeth bleaching a popular and often requested dental procedure. Teeth bleaching offered a conservative treatment option for discolored teeth ^{2,3}.

Before the evolution of teeth bleaching, difficult and potentially invasive dental solutions such as veneers and crowns were used to improve teeth esthetics. Recently, simple and fast bleaching procedures became popular and successful. However, teeth bleaching could not be considered a recent technique in dentistry ⁴.

In 1916, Adams ⁵ used hypochloric acid to treat fluorosis and improve teeth esthetics. Ames ⁶ in 1937 reported a technique that utilized a mixture of hydrogen peroxide and ethyl ether on cotton pellets. This mixture was applied for 30 minutes on teeth to treat mottled enamel in 5 to 25 visits.

In 1966, McInnes ⁷ utilized a mixture of hydrochloric acid and hydrogen peroxide to remove brown stains from mottled teeth. This technique was successful in improving the color of the mottled teeth.

Cohen and Parkins⁸ in 1970 published a method for whitening tetracycline-discolored teeth of young adults treated for cystic fibrosis. They utilized 35% hydrogen peroxide and a heated instrument to accelerate the whitening process. The authors were the first to report the capability of hydrogen peroxide in chemically penetrating the enamel and dentin to whiten teeth.

Nutting and Poe ⁹ in 1976 introduced a bleaching technique that utilized 35% hydrogen peroxide and sodium perborate for whitening non vital teeth. This was the technique known as the "walking bleaching technique".

In 1989, Haywood and Heyman¹⁰ were the first to introduce the Nightguard vital bleaching technique that was utilized by the patients at home. They published the first clinical study on teeth whitening using proxigel in vacuum-formed custom trays.

Haywood¹¹ in 1991 modified the regimen for take-home systems to involve the fabrication of a soft plastic nightguard to hold the whitening gel in contact with the teeth. The nightguard was fabricated from a model of the patient's teeth. However, he attributed the first description of successful home bleaching to Dr. Bill Klusmeier in late 1960s, when he reported a technique using gly-oxide; a 10% carbamide peroxide oral antiseptic. This oral antiseptic was inserted in the orthodontic positioners of some