

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Menoufia University Faculty of Science Physics Department

"CHARGED PARTICLES REGISTRATION IN SOLID STATE DETECTORS (SSDs) AND ITS APPLICATIONS"

Thesis
Submitted for the degree of
Doctor of Philosophy in
Radiation Physics

To

Menoufia University Faculty of Science Physics Department

Presented by

Khalid Abdel Bast Ibrahim Shnishin

B. Sc. in Physics 1987 M. Sc. in Radiation Physics 1991

Supervisors

Prof. Dr. Abdel Azeem Hussein

Menoufia University

Faculty of Science

Physics Department

Prof. Dr. Møhamed El-Fiki

President of National

Institute of Standards (NIS)

Cairo, Egypt

Prof. Dr. Mohamed Ghoneim M. Ch.

Menoufia University

Faculty of Science

Physics Department

(1998)

BLAS

To my parent, brothers, wife and lovely daughter Zeinb

Acknowledgment

Acknowledgment

First of all I do thank God for all the gifts He gave me. The author feels deeply indebted to those who have supervised this work. I wish to express my utmost gratitude to Prof. Dr. Abdel Azeem El-Morsy Hussein, Physics Department, Faculty of Science, Menoufia University for his kind supervision, helpful guidance during the entire work, fruitful discussions, stimulating suggestions and for his advice.

Many thanks and great appreciation to both Prof. Dr. Mohamed El-Fiki president of National Institute of Standards (NIS) Cairo Egypt and Prof. Dr. Mohamed Ghoneim Prof. of physics, Physics Department, Faculty of Science, Menoufia University for their kind supervision, encouragement and fruitful helpful guidance during the entire work of this thesis.

Also, many thanks should be given to Prof. Dr. Abdel Azeem Abd El-Kader head of the Physics Department, Faculty of Science, Menoufia University for his continuous encouragement and support. I also express my deep thanks and utmost gratitude to Dr. Ahmed Bashady Geology Department, Faculty of Science, Menoufia University for his helpful in sample collection, specification and element analysis. Also, his guidance in radiometry measurements during the entire work of this thesis is very acknowleged.

I wish to record my deep appreciation to Dr. Hussein El-Samman, Physics Department, Faculty of Science, Menoufia University for his continuous encouragement, support and advice through the entire work.

Finally I would like to express many thanks to all member of Menoufia Radiation Laboratory (MRL) for their helpful assistance and kind cooperation.

Summary

Summary

Charged particle registration in SSDs specially SSNTDs is an interesting and important phenomenon Many application of SSNTDs were taken, viz., uranium and thorium determination in natural samples, rocks, plants, water and soils.

The aim of this work is to study the different factors affecting the response function of LR-115 type 2 detectors, to improve the energy registration domain and to discover an empirical relationship to fit the V_B data covering a wide range of concentrations and temperatures. A spark counter unit was also designed and constructed in this work and was successfully used to improve track shape parameters which consequently led to an increase in accuracy in measuring track response and efficiency. Also, determination of both uranium and thorium contents in natural granite rocks was carried out without the need of standard sources. Measurements of radon gas emanating from the studied samples were also included using a specially constructed chamber.

This thesis contains five chapters. The first is an introduction in which reviews previous studies on the effect of radiation on rocks and minerals.

The second chapter deals with the theoretical aspects of track formation where various models and mechanism of track formation are considered. Also, the relation between alpha particle energies and ranges are investigated. Efficiencies of internal and external sources were also discussed at the end of this chapter.

The third chapter presents the experimental procedure and various techniques used in this work. Including a constructed spark counter circuit and radon measuring chamber.

Chapter four discusses the different factors affecting the response function of LR-115 type 2 detectors. Fitted equation that relates the bulk etch rate to both etching solution, normalities and temperatures was deduced. Also, the excess etch rate ratio as a function of both restricted energy loss (REL) and residual range (R) was described in an empirical formula.

The application part of this thesis is in chapter five in which both uranium and thorium contents in natural granite rocks were determined. Specific radon gas concentrations in pCi/l were also calculated for some of studied samples.

CONTENTS

		Page
Summary		
CHAPTER 1	Mineralogical Expression of Radioactivity	
1-1-1	Metamictisation	1
1-1-2	Fracturing	3
1-1-3	Discolouration	4
1-1-4	Radiohaloes	5
1-1-5	Fission Tracks and α - Tracks	6
1-1-6	Thermoluminescence	7
1-1-7	Natural Radiation	8
CHAPTER 2	Theoretical Aspects Of Track Formation	
2-1	Interaction Of Radiation With Matter	13
2-1-a	Nature Of Interaction	13
2-1-b	Heavy Ion Reaction Mechanism	14
2-1-с	Total Energy Loss	15
2-1-c-1	Nuclear Collision Loss	15
2-1-c-2	Electronic Energy Loss	17
2-1-d	Radiation Damage In Solids	18
2-1-d-1	Latent Track Formation In Polymer	19
2-1-d-2	The Defect Creation	20
2-1-d-3	The Defect Relaxation	20
2-2	Track Formation Models In SSNTDs	21

2-2-a	Total Rate of Energy Loss	21
2-2-b	Primary Ionization (J) Model	21
2-2-с	Secondary Electron Energy Loss	21
2-2-d	Restricted Energy Loss (REL)	22
2-2-е	Radius Restricted Energy Loss (RREL)	24
2-3	Range Energy Relation	24
2-4	Etching Efficiency, Internal & External Sources	26
2-4-a	Internal Thick Source	26
2-4-b	Internal Thin Source	31
2-5-a	External Thick Source	31
2-5-b	External Thin Source	32
CHAPTER 3	Experimental Techniques	
3-1-a	Structure of CR-39	34
3-1-b	Cellulose Nitrate LR-115	35
3-1-с	Chemical Etching	35
3-1-d	Charged Particle Measurements	36
3-1-е	Track Counting Systems	37
3-1-e-1	Optical Microscope	37
3-1-e-2	Spark Counter	37
3-2	Gamma Spectroscopic System	38
3-3	Radon Level Determination Using Charcoal Canister	38
3-3-1		40
A-	Material and Equipment	42
Λ-	Material and Equipment Charcoal Canister	42
B-	· •	

D-	Standard and Background Canisters	44
E-	Procedure of The Experiment	44
F-	Calculation of Radon In An Exposed Canister	45
CHAPTER 4	Etching Properties Of LR-115 Type II	
	Detector	
4-1	Characteristics of Polymeric Track Detectors	47
4-2	Bulk Etch Rate (V _B) Measurements	47
4-3	Spark Counter A helpful Technique In Etching	48
	Processes	
4-4	Bulk Etch Rate Dependence on Both Temperatures	53
	and Concentrations of NaOH Solution	
4-5	Alpha Irradiation Facility	58
4-6	Response of LR-115 Type II Detector At Different	60
	Etching Condition	
CHAPTER 5	Uranium And Thorium Determination In Some	
	Egyptian Samples	
5-1	Sample Collection	83
5-2	Sample Specification And Geological Review	83
5-2-a	Gabal El-Majal Area	83
5-2-b	El-Massakat And El-Eradyia Area	87
5-3	Experimental	90
5-3-1	Chemical Compositions Analysis	90
5-3-2	Alpha Irradiation	91