تقييم صلحية التربة والمياء الاستخدام في المناطق الملوثة بالـ TNT

رسالة مقدمة من الطالب

محمد عبد المجيد عبد المجيد محمد بكالوريوس العلوم الزراعية (مبيدات) – كلية الزراعة . جامعة عين شمس . 2004

> لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

> > قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

تقييم صلاحية التربة والمياء الاستخدام في المناطق الملوثة بالـ TNT

رسالة مقدمة من الطالب محمد عبد المجيد عبد المجيد محمد بكالوريوس العلوم الزراعية (مبيدات) – كلية الزراعة . جامعة عين شمس . 2004

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الزراعية البيئية

تحت إشراف:

1- أ.د/هشام إبراهيم القصاص

أستاذ بيئة التربة والمياه ووكيل معهد الدراسات والبحوث البيئية للدراسات العليا والبحوث جامعة عين شمس

2- د./طه عبد العظيم محمد أستاذ مساعد بقسم العلوم الأساسية البيئية . معهد الدراسات والبحوث البيئية جامعة عين شمس

3- السيد السفير/محمد فتحي الشاذلي
 مدير الإمانة التنفيذية لإزالة الألغام وتنمية الساحل الشمالي الغربي

ختم الإجازة : أجيزت الرسالة بتاريخ / /2016 موافقة مجلس المعهد / /2016 موافقة مجلس الجامعة / /2016

ASSESSMENT OF SOIL AND WATER USABILITY IN TNT POLLUTED AREAS

Submitted By

Mohamed Abd El Mageed Abd El Mageed Mohamed

B.Sc. of Agric. Sci. (Pesticides), Faculty of Agriculture, Ain Shams
University, 2004

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

ASSESSMENT OF SOIL AND WATER USABILITY IN TNT POLLUTED AREAS

Submitted By

Mohamed Abd El Mageed Abd El Mageed Mohamed

B.Sc. of Agric. Sci. (Pesticides), Faculty of Agriculture, Ain Shams
University, 2004

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Agricultural Sciences

Under The Supervision of:

1-Prof. Dr. Hesham Ibrahim El-Kassas

Prof. of Soil and Water Environment and Vice Dean of Institute of Environemntal Studies and Research for Graduate Studies Ain Shams University

2- Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Ass.Prof.for Env.Analytical chemistry
Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

3-Ambassador/ Mohamed Fathy Abd El Hamid El Shazly

National Director for Executive Secretariat for Demining and Development of the North West Coast

Acknowledgement

Firstly, I would like to give all my thanks to Allah for his blessings during work, and for giving me the patience to finish this work.

Great appreciation to Dr. Hesham Ibrahim Elkassas Prof. of Soil and Water Environmental and Dean of Institute of Environmental Studies & Research Ain Shams University for all his support, suggesting the problem and his continuous helping for all my problems during my work.

I also like to give special thanks to Dr. Taha Abd El Azim Mohammed Abd ElRazek Prof. and head of Department Environmental Basic Sciencesfor helping and for his instructive guidance and laborious efforts. Furthermore, I particularly wish to express my cordial greetings and infinite gratitude to Ambassador / Mohamed FathyAbdElhamid El Shazly National Director for Executive Secretariat for the Demining and Development of the North West Coast for suggesting the subject area of this thesis and his valuable suggestion.

Acknowledgement to the Egyptian armed forces and their representatives for the completion of this work: Martyr Brigadier Engineer Maged Ahmed Saleh for his effortand TNT supply during this work and soil samples availability after bombing.

Finally, I would like to thank my Mother, my Father, my wife, my daughter and my son for their support during this work

Mohamed Abd Elmageed

ABSTRACT

Nearly about 22 million mines and shells in Egyptian soils are buried in the area of west north coast Egypt during World War II. Most land mines contain TNT a highly explosive material. Such mines are preventing an area of 660,000 feddans from development in the different activities agriculture, urbanization and tourism. At the same time there are many casualties and accidents results in deaths and handicapped persons. This work is carried out to assess the residual concentration of TNT after detonation. For doing2 different detonations (6 and 10 kg) were carried out. After detonation, soil samples were collected at different depths and different time intervals (five months). The collected samples were analyzed for its TNT concentration using High Performance Liquid Chromatography (HPLC) method.

Such decreased may be due to less no or less activity of degrading microorganism. Also, such decrease may occurred due effect of bombing.

Also, after bombing 10kg it can be seen that while degradation reached 78.19% and 75.99% for the depth 0-4 and 4-20 respectively it decreased to 67.39% at the depth 20-45cm.

Key words: mines, Egyptian soils, TNT, explosive material, HPLC, degradation.

Content

ACNOWLEDGMENTI
ABSTRACTII
List of TablesVI
List of figuresVII
ABBREVIATIONIX
1. Introduction
2. Review of literature
2.1 Soil system
2.1.1 Soil quality
2.1.2 Soil contamination
2.1.3 Soil Pollutions
2.1.4 Sources of Soil Pollutant
2.1.5 Role of Soil Purification
2.2 Water
2.3 World War II
2.3.1 The Landmines
2.3.2 Anti-personnel mines
2.3.3 Anti-personnel blast mines
2.3.3 Anti-personnel blast mines.122.3.4 Anti-personnel fragmentation mines13
2.3.4 Anti-personnel fragmentation mines
2.3.4 Anti-personnel fragmentation mines132.3.5 Anti-tank mines14
2.3.4 Anti-personnel fragmentation mines132.3.5 Anti-tank mines142.3.6 Unexploded Ordnance and Ammunition14
2.3.4 Anti-personnel fragmentation mines132.3.5 Anti-tank mines142.3.6 Unexploded Ordnance and Ammunition142.3.7 Abandoned ammunition14
2.3.4 Anti-personnel fragmentation mines132.3.5 Anti-tank mines142.3.6 Unexploded Ordnance and Ammunition142.3.7 Abandoned ammunition142.3.8Munitions and Explosives of Concern (MEC)15

2.3.9.3 Toxicity of explosives	. 20
2.3.9.4 Invertebrates	. 22
2.3.9.5 Vertebrates	. 22
2.3.9.6 Plants	. 23
2.3.10 Explosives Contaminated Soils	. 23
2.3.11 Levels monitored or estimated in the water	. 25
2.3. 12 Releases to the environment	. 25
2.3.13 Transformation and Degradation	.26
2.3.14 Environmental Fate	. 27
2.3.14.1 Dissolution	. 28
2.3.14.2Volatilization	. 29
2.3.14.3 Adsorption	. 29
2.3.14.4 Photolysis	. 30
2.3.14.5 Hydrolysis	. 31
2.3.14.6 Reduction	. 32
2.3.15 TNT degradation	. 32
2.3.16 Transformation in soil	. 34
3. Materials and Methods	. 36
3.1- Sampling site	. 36
3.2 -Soil physical and chemical properties	. 37
3.3 TNT samples	. 37
3.4 Sampling of TNT contaminated	. 37
3.5 Sample preparation	. 38
3.6 Sample extraction	. 39
$3.7 High\ performance\ liquid\ chromatography\ (HPLC)\ Conditions\ .$.39
3.7.1 HPLC System	. 39
3.7.2 TNT Stock Solutions	. 39
3.7.3 TNT Working Solutions	. 40

3.8- Water	40
4. Results and Discussion	41
Conclusion	54
Summary	55
References	57
Arabic Summary	

List of Tables

Table no.	Title	Page
1	Chemical identity of 2,4,6-Trinitrotoluene	18
2	Physical and chemical properties of 2,4,6- Trinitrotoluene	19
3	Physical and chemical properties of soil under investigation in site 1.	41
4	TNT residues concentration (mg kg ⁻¹ ±SD) after bombing 6kg during 5 months in the surface soil (0 - 4 cm).	41
5	TNT residue concentration (mg kg ⁻¹ ±SD) after bombing 6 kg of TNT during 5 months at soil depth 4-20cm.	43
6	TNT residue concentration (mg kg ⁻¹ ±SD) after bombing 6 kg of TNT during 5 months at soil depth 20-47cm.	45
7	Physical and chemical properties of soil under investigation in site 2.	47
8	TNT residues concentration (mg kg ⁻¹ ±SD) after bombing of 10 kg TNT during 5 months in the surface soil (0 - 4 cm).	47
9	TNT residue concentration (mg kg ⁻¹ ±SD) after bombing of 10 kg TNT during 5 months at soil depth 4-20cm.	49
10	TNT residue concentration (mg kg ⁻¹ ±SD) after bombing of 10 kg TNT during 5 months at soil depth 20-45cm.	51

List of figures

Figure no.	Title	Page
1	AP blast mines	13
2	AP fragmentation mines	13
3	Reductive degradation pathway and main degradation products of TNT.	33
4	show blasting hole in site 1	38
5	show blasting hole in site 2	38
6	TNT standard curve chromatograms	40
7	Decrease of TNT (6 kg) in soil over time at depth 0-4 cm (Site 1)	42
8	Peak of TNT (6kg) residues in soil over time at depth 0-4 cm (Site 1)	43
9	Decrease of TNT (6 kg) in soil over time a depth 4-20 cm (Site1)	44
10	Peak of TNT (6kg) residues in soil over time at depth 4-20 cm (Site1)	44
11	Decrease of TNT (6 kg) in soil over time at depth 20-47 cm (Site1)	45

12	Peak of TNT (6kg) residues in soil over time at depth 20-47 cm (Site1)	46
13	Decrease of TNT (10 kg) in soil over time at depth 0-4 cm (Site 2)	48
14	Peak of TNT (10kg) residues in soil at over time at depth 0-4 cm (Site 2)	49
15	Decrease of TNT (10 kg) in soil over time at depth 4-20 cm (Site2)	50
16	Peak of TNT (10kg) residues in soil over time at depth 4-20 cm (Site2)	51
17	Decrease of TNT (10 kg) in soil over time at depth 20-45 cm (Site2)	52
18	Peak of TNT (10kg) residues in soil over time at depth 20-45 cm (Site2)	53

ABBREVIATION

A

ATSDR Agency for Toxic Substances and Disease

Registry

Am-DNT Aminodinitrotoluene

В

BCF Bioconcentration Factor

BIP Blow-in-Place

 \mathbf{C}

CCW Convention on Prohibitions or Restrictions on

the Use of Certain Conventional Weapons
Which May be Deemed to be Excessively
Injurious or to Have Indiscriminate Effects

D

DNX 1,3-dinitroso-nitro-1,3,5-triazinane

DMM Discarded Military Munitions

DANT Diaminonitrotoluene

DNT Dinitrotoluene

 \mathbf{E}

ERW explosive remnants of war

Η

HMX High Melting Explosive (or octahydro-

1,3,5,7- tetranitro-1,3,5,7-tetrazocine)

I

ICRC International Committee of the Red Cross

IMAS International Mine Action Standards

L

LAP load, assemble, and pack

LC-MS liquid chromatography-mass spectrometry
LOEC lowest observed effective concentration

M

MNX 1-nitroso-3,5-dinitro-1,3,5-triazinane

Ν

NB nitrobenzene

NFESC Naval Facilities Engineering Service Center

NOEC no observed effective concentration

0

OB open burning
OD open detonation

P

PETN Pentaerythritoltetranitrate PTFE Polytetrafluoroethylene

R

RDX 1,3,5-trinitro-1,3,5-triazinane

 \mathbf{S}

SSSA Soil Science Society of America

 \mathbf{T}

TNT 2,4,6-trinitrotoluene

TNX 1,3,5-trinitroso-1,3,5-triazinane

TWA Time-weighted average

TAT Triaminotoluene

U

USAEC U.S. Army Environmental Center

UXO Unexploded ordnance

USAMC U.S. Army Material Command

USEPA U.S. Environmental Protection Agency

 \mathbf{V}

VOC volatile organic compound

Acknowledgement

Firstly, I would like to give all my thanks to Allah for his blessings during work, and for giving me the patience to finish this work.

Great appreciation to Dr. Hesham Ibrahim Elkassas Prof. of Soil and Water Environmental and Dean of Institute of Environmental Studies & Research Ain Shams University for all his support, suggesting the problem and his continuous helping for all my problems during my work.

I also like to give special thanks to Dr. Taha Abd El Azim Mohammed Abd ElRazek Prof. and head of Department Environmental Basic Sciencesfor helping and for his instructive guidance and laborious efforts. Furthermore, I particularly wish to express my cordial greetings and infinite gratitude to Ambassador / Mohamed FathyAbdElhamid El Shazly National Director for Executive Secretariat for the Demining and Development of the North West Coast for suggesting the subject area of this thesis and his valuable suggestion.

Acknowledgement to the Egyptian armed forces and their representatives for the completion of this work: Martyr Brigadier Engineer Maged Ahmed Saleh for his effortand TNT supply during this work and soil samples availability after bombing.

Finally, I would liketo thank my Mother, my Father, my wife, my daughter and my son for their support during this work

Mohamed Abd Elmageed