

Chemical and Biological Reactivity of Some Substituted Quinolinones

A Thesis Submitted

By

Al-Shimaa Badran Abdel-Monem

B.Sc., Ed. 2008; M.Sc. 2013

In Partial Fulfillment for

Requirements of Doctor of Philosophy Degree for Teacher's Preparation in Science (Organic Chemistry)

Supervisors

Prof. Dr. Mohamed Abass Mohamed Prof. Dr. Manal Mohamed Ramadan Assist. Prof. Dr. Magdy Ahmed Mohamed Assist. Prof. Dr. Hany Mohamed Hassanin

Ain Shams University

Cairo, A. R. EGYPT 2016

Approval Sheet

Chemical and Biological Reactivity of Some Substituted Quinolinones

Supervisors	Signature	
Prof. Dr. Mohamed Abass Moh	amed	
Prof. of Organic Chemistry, Facu	lty of Education, Ain Shams University.	
Prof. Dr. Manal Mohamed Ran	nadan	
Prof. of Biochemistry and He	ead of Flavour and Aromatic Chemistry	
Department, National Center of Rese	arch	
Assist. Prof. Dr. Magdy Ahmed	Ibrahim	
Assist. Prof. of Organic Chen	nistry, Faculty of Education, Ain Shams	
University.		
Assist. Prof. Dr. Hany Mohamed	l Hassanin	
Assist. Prof. of Organic Cher	mistry, Faculty of Education, Ain Shams	
University.		
Head of Che	emistry Department	
•••••		
Prof. Dr		
Higher studies:		
The thesis was approved	Approval date / / 2016	
Approved by Council of Faculty	Approved by Council of University	
Date / / 2016	Date / / 2016	

first of all, gratituted and
thanks come from all
my deep heart to
Allah
This work is dedicated to
my lovely father,
my lovely mother,
my lovely husband,
my pretty sister,
my lovely brother,
my lovely brother,
my lovely smart kid
(nour el-din)

Acknowledgement

First of all, thanks to <u>Allah</u>, for helping me to accomplish this thesis.

I would like to express my sincere gratitude and indebtedness to my professor Prof. Dr. Mohamed Abass Mohamed, Prof. of Organic Chemistry; for his continuous and valuable discussions during supervision, continuous encouragement, valuable helping in interpretation of the results, revision and follow up this work with keen interest and guidance.

I would like to express deep thanks and gratitude to my professor Dr. Magdy Ahmed Mohamed, Assistant Prof. of Organic Chemistry; for his continuous and valuable discussions during supervision, for his suggestions the plan of research, valuable helping in interpretation of the results and lay out of this thesis and to follow the progress of the work with keen interest and guidance..

Also, I would like to express my sincere appreciation towards my professor Dr. Hany Mohamed Hassanin Assistant Prof. of Organic Chemistry; for his continuous and valuable discussions during supervision, continuous encouragement, and his valuable revision.

I would like to express my sincere appreciation towards prof. Dr. Manal Mohamed Ramadan Prof. of Biochemistry and head of Flavour and Aromatic Chemistry Department, National Center of Research for her faithful efforts and helping me to carry out the biological experiments in this thesis and take responsibility for education, understanding and awareness of this work and discussion.

I am truly thanks to Prof. Dr. Ali Taha, Head of the Department and Prof. Dr. Mostafa Mohamed Ismail the former Head of the Department and Prof. Dr. Said Mohamed Khalil, dean of the faculty for their great kind facilities and encouragement. Finally, I do thank for my professors and colleagues at chemistry department, Faculty of Education.

Al-Shimaa Badran Abdel-Monem

The Student had successfully studied the following Programs and courses:

1. General Diploma for Teacher's Preparation in Science (Chemistry):

- i. Organic Chemistry 1: Natural Products and Polymer Chemistry
- ii. Organic Chemistry 2: Reaction Mechanism and Stereochemistry
- iii. Physical Chemistry 1: Catalysis Chemistry and Electrochemistry
- iv. Physical Chemistry 2: Quantum Chemistry
- v. Inorganic Chemistry 1: Polarography
- vi. Inorganic Chemistry 2: Organometallic Compounds
- vii. Inorganic Chemistry 3: Chemistry of Solutions
- viii. Inorganic Chemistry 4: Metal Chelates
 - ix. Educational Course I
 - x. Educational Course II
 - xi. English Language

2. Special Diploma for Teacher's Preparation in Science (Organic Chemistry):

- i. Organic Chemistry 1: Spectroscopy I: IR, UV and Mass Spectrometry
- ii. Organic Chemistry 2: Spectroscopy II: NMR Spectrometry
- iii. Organic Chemistry 3: Chemistry of Heterocyclic Compounds
- iv. Organic Chemistry 4: Selected Topics: Aromaticity, Tautomerism and, Delocalized Chemical bonding.
- v. Organic Chemistry 5: Stereochemistry
- vi. Organic Chemistry 6: Organic Reactions
- vii. Organic Chemistry 7: Free Radicals Reactions
- viii. Organic Chemistry 8: Sulfur & Phosphorus and Organic compounds Analytical Chemistry
 - ix. Organic Chemistry 9: Review Article
 - x. Educational Course I
 - xi. Educational Course II.

xii. English Language

3. Master Degree for Teacher's Preparation in Science (Organic Chemistry):

- i. Organic Chemistry 1: Physico-Organic Chemistry
- ii. Organic Chemistry 2: Microanalysis and Modern Organic Synthesis
- iii. Organic Chemistry 3: Advanced Organic Spectroscopy
- iv. Organic Chemistry 4: Pericyclic Reactions
- v. Educational Course I
- vi. Educational Course II
- vii. English Language

4. Doctor Degree for Teacher's Preparation in Science (Organic Chemistry):

- i. Organic Chemistry 1: Advances in Reactions of Heterocyclic Compounds
- ii. Organic Chemistry 2: Advances in Synthesis of Heterocyclic Compounds
- iii. Educational Course I
- iv. Educational Course II
- v. English Language

Cont	ents			
Subj	ject			Page
Aim	of the	work		
Abst	tract			
Sum	mary			I-XII
1.	Chapt	er 1. Lite	erature Survey	1
	1.1.	Introduc	tion	1
	1.2.	Reaction	s of Keto Acids and Esters with	1
		Some No	ucleophilic Reagents	
		1.2.1.	Reactions of a-keto acids and esters	1
		1.2.2.	Reactions of B-keto esters	4
		1.2.3.	Reactions of y-keto esters	34
		1.2.4.	Reactions of δ -keto esters	34
		1.2.5.	Reactions of a and β -diketo esters	36
		1.2.6.	Reactions of a and γ -diketo acids and esters	38
		1.2.7.	Reactions of β and $\delta\text{-diketo}$ esters	45
	1.3.		s of Quinolinyl Keto Acids and vith Some Nucleophilic Reagents.	46
		1.3.1.	Reactions of a-keto acids and esters	46
		1.3.2.	Reactions of β -keto acids and esters	52
		1.3.3.	Reactions of a and y-diketo acids	
			and esters	65
2.	Chapt	er 2. Res	sults and Discussions	68
3.	Chapt	er 3. Bio	logical Applications	130
4.	Chapt	er 4. Exp	perimental Section	174
	4.1.	Chemica	experiments	174

Contents

	4.2. Biological experiments	197
5.	Conclusions	202
6.	References	204
7 .	Supplementary	234
	7.1. Spectral Data	234
	7.2. Published Paper	260
	(ملخص عربي) Arabic Summary	f
	(مستخلص عربی) Arabic Abstract	

Table of Abbreviations

Abbreviation	Expression
[bmim][BF4]	1- <i>n</i> -Butyl-3-methylimidazolium tetrafluoroborate
[bmim][PF ₆]	hexafluorophosphate
¹³ C NMR	Carbon-13 nuclear magnetic resonance
¹ H NMR	Proton-13 nuclear magnetic resonance
¹ H NMR	Proton nuclear magnetic resonance
Ac ₂ O	acetic anhydride
ADS	Antioxidant defence system
aq.	Aqueous
Ar	Aromatic or aryl group
bentonite clay	an absorbent aluminium phyllosilicate clay consisting mostly of montmorillonite
BF ₃	Boron trifluoride
ВНА	Butylated hydroxyanisole
BHT	Butylated hydroxytoluene
Bi ₂ WO ₆	Bismuth tungstate
Bn	Benzyl
Вос	tert-Butoxycarbonyl
Ce ₂ CO ₃	Cesium carbonate
D ₂ O	Deuterated water
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DG	Dodecyl gallate
DMAc	Dimethylacetamide
DMF	Dimethylformamide
DMF-DMA	Dimethylformamide-dimethylacetal

a

Abbreviations

DMSO	Dimethylsulfoxide	
DMSO-d ₆	Hexadeuteriodimethylsulfoxide	
DPPH	2,2-Diphenyl-1-picrylhydrazylhydrate	
EDTA	Ethylene diaminetetraacetic acid	
Et ₂ O	Diethyl ether	
Et ₃ N	Triethyl amine	
Ev	Electron Volt	
g	Gram (mass unit = 0.001 Kg)	
h	Hour	
IC ₅₀	50% Inhibition of cell viability	
IR	Infrared spectroscopy	
IR	Infrared spectrum	
I _r %	Intensity ratio (relative to base peak ion)	
J	Coupling constant (Hz) in NMR measurements	
LDH	Lactate dehydrogenase enzymes	
L-proline	Pyrrolidine-3-carboxylic acid	
М	Molar (Molarity)	
m.p. (T _m)	Melting Point	
M.Wt.	Molecular weight	
m/z	Mass to electron charge ratio	
MCM-41-	is a mesoporous material with a hierarchical structure from a family of silicate and alumosilicate and that can be used as catalysts or catalyst supports	
MHz	Mega Hertz	
Min	Minute	
MI	Milli-liter	
MS	Mass spectrum	

Abbreviations

MS	Molecular sieves	
MTT	3-(4,5-Dimethyl-2-thiazolyl) -2,5-diphenyltetrazolium bromide	
MW	Microwave assisted process	
°C	Celsius	
OG	Octyl gallate	
PG	Propyl gallate	
Pmb	para-Methoxybenzyl	
p-TsOH	para-Tolueneculfonic acid	
r.t.	Room temperature	
ROS	Reactive Oxygen Species	
TAA	Tetrazol-1-acetic acid	
TBAF	Tetrabutylammonium fluoride	
TBAI	Tetrabutylammonium iodide	
TBHP	tert-butyl hydroperoxide	
TBHQ	Tertiary butyl hydroquinone	
TEA	Triethylamine	
THF	Tetrahydrofurane	
TmgTf	tetramethylguanidinium trifluoroacetate	
TMS	Tetramethylsilane	
TMSCI	Chlorotrimethylsilane	
Triflate	Trifluoroacetate	
α	Alpha	
β	Beta	
Υ	Gama	
δ	Chemical shift	