

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من 15-25 مئوية ورطوبة نسبية من 20-40% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

STUDY ON THE MECHANISM OF CORROSION AND INHIBITION OF SOME STEELS

For

Ph. D. Of Science

Submitted to Chemistry Department

Faculty of Science

Menoufia University

1994

Вy

AYMAN SHIBL MOHAMED DIAB M. SC.

Supervised By

Badi Elden Atye

Prof. Dr. BADR BL-DEEN ATEYA

Professor of

Physical Chemistry

Faculty of Science

Cairo University

Prof. Dr. EL-SAYED EL-SHEREAFY

Professor of

Physical Chemistry

Faculty of Science

Menoufia University

Jershig.

Prof. Dr. FARAG A.ISSA

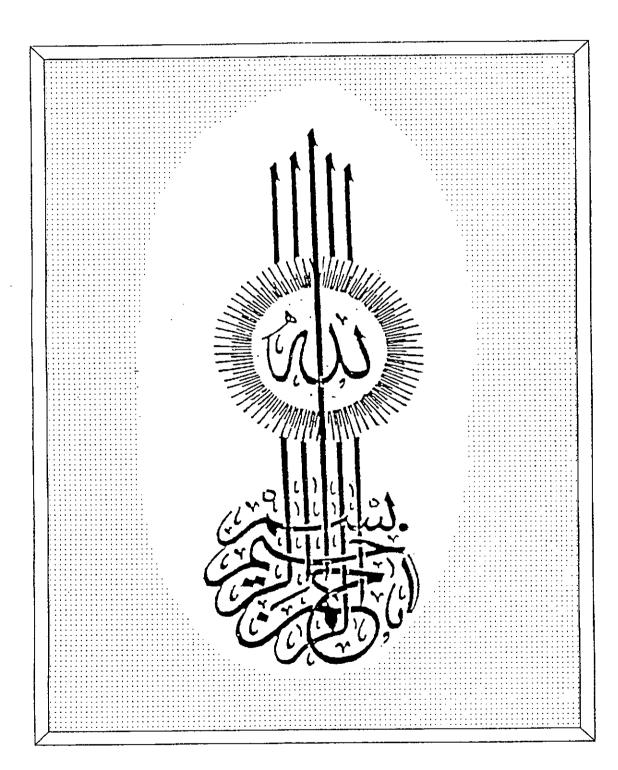
Professor of

Inorganic Chemistry

Faculty of Science

Menoufia University

Dr. MOUSTAFA M. ALI GOUDA


رسفار مران دوراة Assist. Professor of

Physical Chemistry

Faculty of Science

Menoufia University

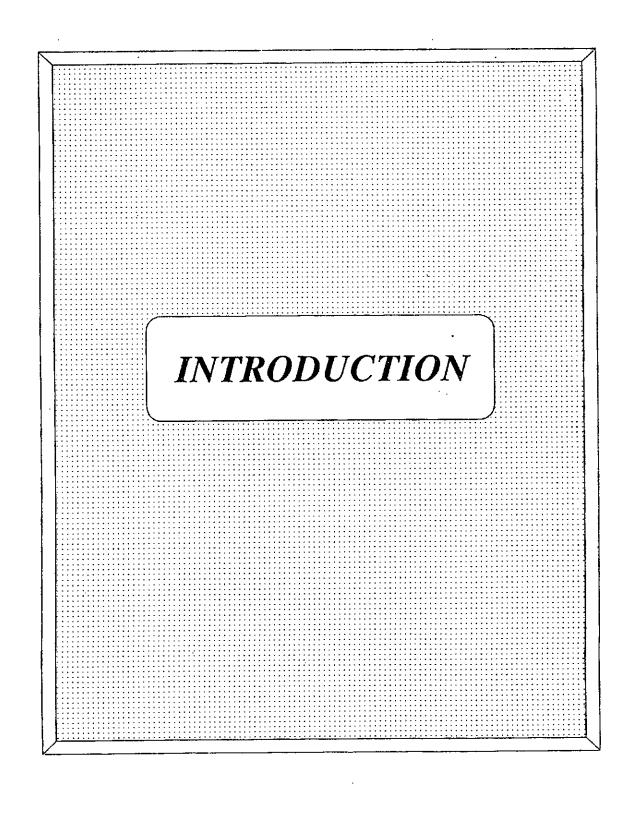
CONTENTS

subjec	page	
1	INTRODUCTION	1
1.1	DEFINITION	1
1.2	SOME TYPES OF CORROSION AND FORMS OF CORROSION EF	FECT 2
1.3	DEFINITION AND CLASSIFICATION OF STEEL	3
1.4	CRITICAL CORROSION SYSTEM	5
1.5	PHASES OF PITTING CORROSION	7
2	LITERATURE REVIEW OF PITTING CORROSION	10
2.1	FACTORS WHICH AFFECT ON THE PITTING CORROSION	1 1
2.1.1	Corrosive medium	11
2.1.2	Effect of the material	18
2.1.3	Effect of micro-structure and heat treatment	22
2.1.4	Oxide film composition	25
2.1.5	Effect of surface, thin film, and scaling	28
2.2	FACTORS AFFECTING DISTRIBUTION OF PITS	30
2.3	SHAPE OF THE PITS	31
2.4	MECHANISM OF PITTING CORROSION	3 2
2.5	PREVENTION OF PITTING CORROSION DURING PRACTICAL	
	MUBKING	33

2.6	SOME METHODS TO TEST THE TENDENCY OF METAL OR ALLOY	
	TOWARD PITTING CORROSION	34
2.7	SOME METHODS TO INVESTIGATE PITTING CORROSION	35
2.7.1	Potentiodynamic methods	35
2.7.2	Potentiostatic methods	36
2.7.3	Galvanostatic method	36
2.7.4	Static potential band method	37
3	THE AIM OF THE WORK	38
4	EXPERIMENTAL TECHNIQUES	40
4.1	THE COMPOSITION OF STEELS AND THE SPECIMENS	
	PREPARATION	40
4.2	DEPTH PROFILES ANALYSIS WITHIN PASSIVE FILMS	41
4.3	THE TEST SOLUTION	41
4.4	THE CORROSION CELL	41
4.5	THE EXPERIMENTAL PROCEDURE	42
5	TEST RESULTS	45
5.1	VALUES OBTAINED	45
5.2	EVALUATION OF THE TEST RESULTS	46
6	DISCUSSION OF THE TEST RESULTS	50
6.1	DEPTH PROFILES WITHIN PASSIVE FILMS	50
6.2	SPECIMENS X/x (WITHOUT PRETREATMENT IN BOILING MEDIA)	53

6.2.1	Influence of sulfate and nitrate inhibitors	53
6.2.2	Effect of oxide films	59
6.2.3	Pitting potential range	60
6.2.4	Mo-Effect	61
6.3	EFFECT OF PRETREATMENT IN BOILING MEDIA	61
6.4	METALLOGRAPHIC RESULTS	64
7	SUMMERY AND CONCLUSION	65
8	REFERENCES	68
9	TABLES AND FIGURES	
	•	

ACKNOWLEDGEMENT


The author wishes to express his deep thanks and gratitude to Prof. Dr. BADR G. ATBYA, professor of Physical Chemistry, Faculty of Science, Cairo University for suggesting the subject. His advice, help and close supervision are deeply appreciated.

I wishe also to express my grateful acknowledgement to Prof. Dr. FARAG A. ISSA, Professor of Inorganic Chemistry and Dr. MOUSTAFA GOUDA, Faculty of Science, Menoufia University, for their help and for facilitating all problems during this work.

Thanks are due for Prof. Dr. **EL-SAYED EL-SHEREAFY**, professor of Physical Chemistry, Faculty of Science-Menoufia University, for his advices and revision of this thesis.

Special thanks to Prof. Dr. W. SCHWENK, professor of Physical Chemistry, Mannesmann Forschungsinstitut Germany, for giving me the chance to work among his research group in Institute of Eisenhuttenkunde, RWTH, Aachen, Germany.

Thanks to Prof. Dr. IBRAHIM F. ZEID, head of chemistry department for his encourgement and support.

1-INTRODUCTION

Mearly all metals are thermodynamically reactive in most natural environments, in particular in air, especially when it is moist, polluted or hot, and in water, especially when it is saline, acid or alkaline. Exposed to dry, pure and cool air, most metals quickly develop an oxide film after that the rate of oxide growth slows down because it forms a solid barrier between the metal and oxygen through which metal and oxide ions pass only with difficulty. The air-formed oxide film, is often (e.g. unalloyed steel) not very resistant to ordinary atmospheres, ordinary waters and, especially, chemical fluids; and with its breakdown, corrosion of the metal propagates⁽¹⁾.

1.1 DEFINITION (2):

Corrosion is a physico-chemical interaction between a metal and its environment which results in changes in the properties of the metal and which may often lead to impairment of the function of the metal, the environment, or the technical system, of which these form a part. This interaction is usually of an electrochemical nature.

Corrosion effect is the change in any part of the corrosion system caused by corrosion.

Corrosion damage is the corrosion effect which is considered detrimental to the function of the metal, the environment or the technical system of which these form a part.

1.2 SOME TYPES OF CORROSION AND FORMS OF CORROSION EFFECT:

Corrosion can be classified into some forms, the bases for this classification being the appearance of the corroded metal. In most cases, the naked eye is sufficient but sometimes magnification is helpful or required(2,3).

1.2.1(a) Types of corrosion without stress (2):

- a- Uniform or general corrosion.
- b- Shallow pit formation.
- c- Pitting corrosion.
- d- Intergranular corrosion. .
- e- Transgranular corrosion.
- f- Selective corrosion.
- g- Galvanic corrosion.

1.2.1(b) Forms of corrosion effect without stress(2):

- a- General even decrease in thickness.
 - b- General uneven decrease in thickness with formation of shallow pits.
- c- Localized decrease in thickness pits.
- d- Attack on grain boundaries.

- e- Localized attack at segregations.
- f- Specific reaction with a part of microstructure.
- g- Corrosion attack of anodic areas of a corrosion cell.

1.2.2(a) Types of corrosion with stress(2)

- a- Erosion corrosion.
- b- Stress corrosion cracking.
- c- Cavitation corrosion.
- d- Corrosion fatigue.

1.2.2(b) Forms of corrosion effect with stress (2)

- a- Destruction of the layer and formation of shallow pits.
- b- Inter-or transcrystalline cracks.
- c- Localized attack on the surface, similar to pitting.
- d- Transcrystalline cracks.

1.3 DEFINITION AND CLASSIFICATION OF STEEL:

Steel is an alloy of iron with carbon, classifed into:

- 1.3.1 Unalloyed steel, which does not contain alloyed elements such as, Mn, Si, Cr, V).
- 1.3.2 Alloyed steel which is classified according to the percentage of its alloyed elements into two types.

a-low alloyed steel:

The steel contains less than 5 wt% of alloying elements.

b-high alloyed steel:

The steel contains more than 5 wt% of alloying elements. The important group of this type contains more than 12 wt% of chromium is chemical resistant steel, which is classified into:

- 1-Heat resistant steel, contains otherwise chromium, the elements of silicon and aluminium.
- 2-Stainless steel , contains otherwise chromium often nickel. It is classified according to its structure formation into four groups:
- 2(a)Martensitic steel with body centered tetragonal > 0,12 wt% carbon and maximum 15% chromium.
- 2(b)Ferritic steel with body centered cubic lattice, contains nearly 17 wt% chromium.
- 2(c)Austenitic steel with face centered cubic lattice . it contains nearly 18 wt% chromium and 10 wt% nickel with or without additive of molybdenum. This type of steel has a good resistant to a wide range of corrossive media, high ductility, high temperature resistance and good weldability(4).
- 2(d)Ferritic-austenitic steel give good mechanical properties and high resistance aganist chloride-induced stress corrosion cracking like ferritic steel.

1.4 CRITICAL CORROSION SYSTEM:

The reason of the pit formation on the unalloyed steel is the and cathodic local difference οf anodic behaviour in the formation of a concentration cell. environment, due to According to Fig. (1) if, for any reason, the rate of metal dissolution is momentarily high at one particular point, chloride ions will migrate to this point, to give metal chloride which hydrolyses to produce HCl that increases corrosion of an active metal. The points at which the rate of dissolution is momentairly high and at which pits are initiated may be in the form of surface scratch. During the initiation, conditions are rather unstable. When the conditions allow chloride and hydrogen ions to stay for sometimes at the anodic areas corrosion propagates. The passivity of surface is stabilized by NaOH generated at aerated cathodic In the initiated pit, rapid dissolution occurs, oxygen reduction takes place on adjacent surfaces. dissolution of metal within the pit tends to produce an excess of positive charge in this area, resulting in the migration of chloride ions to maintain electroneutrality. Thus, in the pit, there is a high concentration of MCl or MCl2, as a result of hydrolysis, a high concentration of hydrogen ions is produced in the pit.

 $MC1_2 + H_2O ----> (MOH^+ + C1^-) + (H^+ + C1^-)$

Both H^* and Cl^* increase the dissolution of metal in the pit. The anodic product $M(OH)^*$ migrates into the environment and is then