The Retention of MAD/MAM and CAD/CAM Y-TZP Crowns with Three Different Preparation Tapers

Thesis submitted for the partial fulfillment of the master degree requirements in fixed Prosthodontics

Faculty of Dentistry

Ain Shams University

Ву

Fatma Adel Mohamed Ahmed

B.D.S~(2004)

Teaching assistant in crown & bridge department
Faculty of Dentistry
Ain Shams University

Faculty of Dentistry Ain Shams University 2011

<u>Supervisors</u>

Dr. Amína Mohamed Hamdy

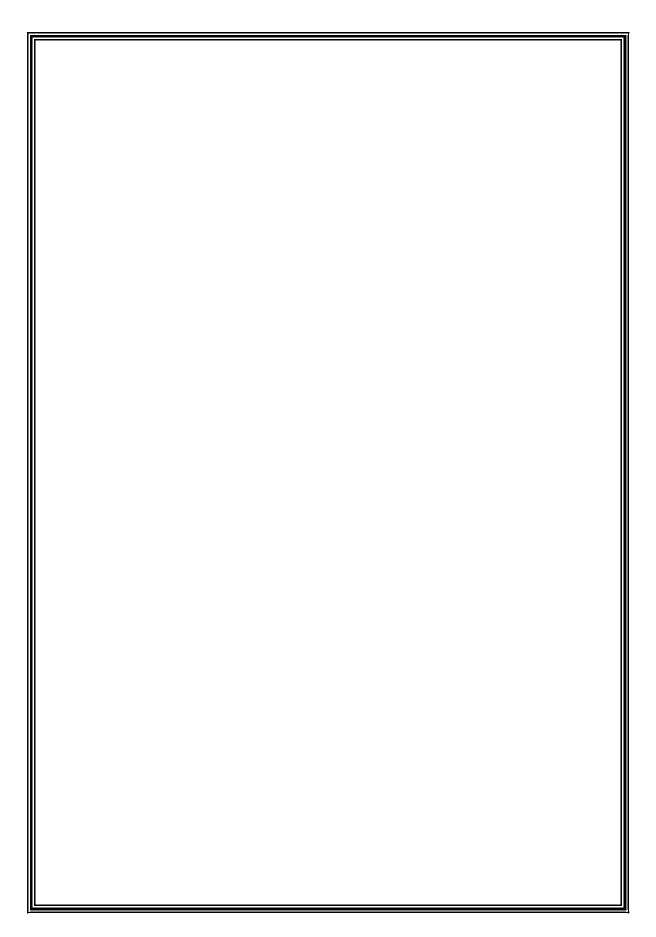
Assistant Professor and Head of Department of Crown & Bridge
Faculty of Dentistry
Ain Shams University

Dr. Tarek Salah Morsi

 $Assistant\ professor\ of\ fixed\ Prosthodontics$

Faculty of Dentistry
Ain Shams University

بسم الله الرحمن الرحيم


إقالوا سبحانك لا علم لنا

إلا ما علمتنا إنك أنت

صدق الله العظيم

سورة البقرة "آية ٣٢"

Dedication

This work is dedicated to

My Family, for their great care and support.

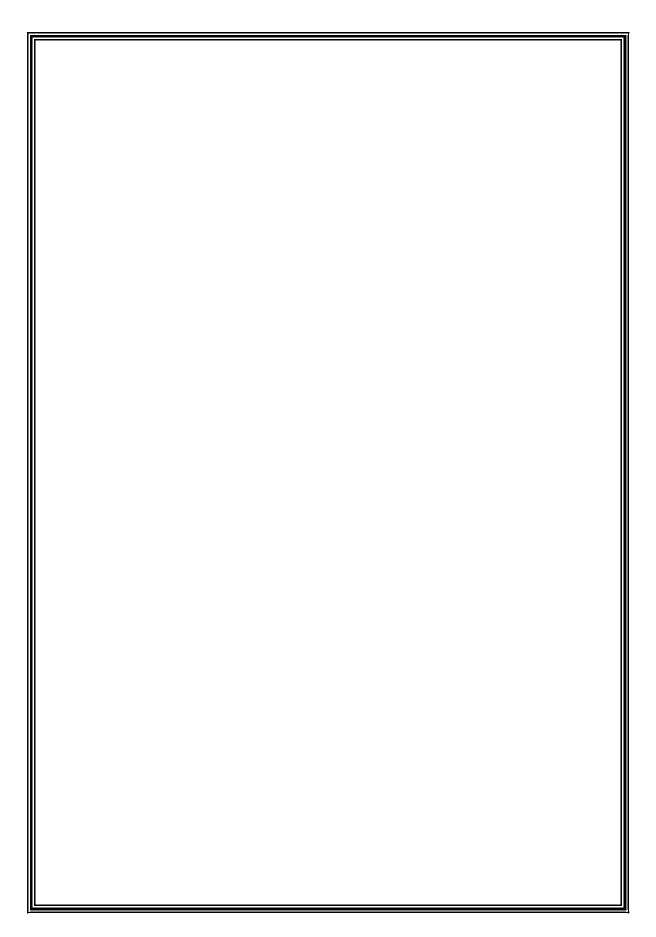
To my unbreakable union, my sisters, brother and my true friends, for their encouragement and great cooperation.

<u>Acknowledgement</u>

First and foremost thanks are due to Allah the beneficent and merciful.

I would like to express my deepest gratitude to

Dr. Amína Mohamed Hamdy, Assistant Professor
and Head of Department of Crown & Bridge, Faculty of
Dentistry, Ain Shams University for her constant support,
advice and valuable comments.


Deep thanks and appreciation to Dr. Tarek Salah Morsí, Assistant Professor of fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for his main support, constant advice and valuable stimulating guidance

Personal appreciation and thanks to Dr.Amr El-Etreby and Dr.Marwa Wahsh Lecturer of fixed Prosthodontics, Ain Shams University for their great guidance and help.

I would like to express my deep thanks to DR. Ayman galal el dimeery, Assistant Lecturer of fixed Prosthodontics, Ain Shams University for his great help and valuable comments throughout this work.

Special thanks to DR.Manar Mohsen and Mr.Ahmed Osama Nabíh for their great help.

Finally, I would like to thank all the staff members, colleagues and laboratory technicians in crown and bridge department for their help and encouragement during the course of this work.

<u>List of Contents</u>

	Page
Introduction	•
Review of literature	٣
Aim of the study	٣1
Materials & methods	٣٢
Results	٦٤
Discussion	٧٦
Summary and conclusion	۸۳
References	٨٦
Arabic Summary	

<u>List of tables</u>

Table 1:The composition and properties of the	e ice zirconia translucent
blocks	.Error! Bookmark not defined.
Table Y: The composition and properties of VI	TA In-Ceram YZ cubes. Error! Bookm
Table ۳: Variables interaction	.Error! Bookmark not defined.
Table ٤: Retentive force mean values (N) for b	oth milling techniques with
different tapers	.Error! Bookmark not defined.
Table o: Retentive force mean values for Zirko	nzahn group with different
tapers	.Error! Bookmark not defined.
Table 1: Retentive force mean values for CERE	C InLab group with
different tapers	.Error! Bookmark not defined.
Table V: Retentive force mean values of CEREO	CinLab and Zirkonzahn
with taper №	.Error! Bookmark not defined.
Table Λ : Retentive force mean values of CERE	C inLab and Zirkonzahn
with taper ۱٤º	.Error! Bookmark not defined.
Table 9: Retentive force mean values of CEREC	C inLab and Zirkonzahn
with taper Y · º	.Error! Bookmark not defined.
Table \ · : Two way analysis of variance ANOV	A test of significance
comparing variables affecting retentive force	mean values Error! Bookmark not d e

List of figures

Figure \: Zirkonzahn translucent green ice blockError! Bookmark not defined.	
Figure Y: VITA In-Ceram YZ Cubes Error! Bookmark not defined.	
Figure ۳: diagram showing different TOC designs ۸°, ۱٤°, ۲۰°Error! Bookmark not	efine
Figure 4: Different TOC of the master dies Error! Bookmark not defined.	
Figure o: Diagram showing the dimensions of the prepared master die Error! Book	nark ı
Figure 7: Prepared master dieError! Bookmark not defined.	
Figure V: Three laser visible stone dies with different TOC Λ°, 1٤°, Υ·° Error! Bookn	ark ne
Figure A: Zirkograph · Y ○ ECO with oth axis Error! Bookmark not defined.	
Figure 9: Composite resin moke up on the stone die Error! Bookmark not defined.	
Figure 1 · : Composite mock up and ice zirconia block in the milling table Error! Boo	marl
Figure 11: Tracing of the mock up and milling of zirconia blockError! Bookmark no	defii
Figure \forall : A-stage \forall milling, B- Milling bur \forall L, C- Stylus \forall Lerror! Bookmark not	defin
Figure 17: A- stage Y milling, B- Milling bur YL, C-Stylus YLError! Bookmark not det	ned.
Figure 14: A- stage T milling, b- Milling bur 1L, c- Stylus 1LError! Bookmark not de	ined.
Figure 10: Milled MAD/MAM copingError! Bookmark not defined.	
Figure \7: Coloring liquidError! Bookmark not defined.	
Figure 1V: The sintered Zirkonzahn coping on its relevant stone die. Error! Bookma	k not
Figure ۱۸: The sintered Zirkonzahn coping on its relevant metal die. Error! Bookma	k not
Figure 19:The inLab (MC XL) unitError! Bookmark not defined.	
Figure Y · : Optical impressionError! Bookmark not defined.	
Figure ۲۱: The ٣٦٠° virtual die Error! Bookmark not defined.	
Figure ۲۲: Insertion axis Error! Bookmark not defined.	
Figure ۲۳: Margin definitionError! Bookmark not defined.	
Figure YE: Proposed design of the coping over the model Error! Bookmark not de	ned.
Figure Yo: Milling preview Error! Bookmark not defined.	
Figure ۲٦: A - Step Bur ۲٠, B-Cylinder Pointed Bur ۲•Error! Bookmark not defined	
Figure YV: Milled CEREC inLab copingError! Bookmark not defined.	
Figure YA: CEREC inLab copings before and after sintering Error! Bookmark not de	ned.
Figure ۲۹: Sintered CEREC inLab coping on its relevant laser visible stone	
die Error! Bookmark not defined.	
Figure ♥·: Sintered CEREC inLab coping on its relevant metal die. Error! Bookmark	ot de
II.	

Figure T1: Cemented zirconia coping on epoxy resin die in a loading
device Error! Bookmark not defined.
Figure TY: Machined attachment device Error! Bookmark not defined.
Figure TT: Cemented coping was inserted in attachment device for
retention test Error! Bookmark not defined.
Figure ٣٤: A column chart of retentive force mean values for both milling
techniques with different tapersError! Bookmark not defined.
Figure To: A column chart of retentive force mean values for Zirkonzahn
group with different tapers (group I) Error! Bookmark not defined.
Figure ٣٦: A column chart of retentive force mean values for CEREC InLab
group with different tapers (group II) Error! Bookmark not defined.
Figure TV: A column chart of retentive force mean values for CEREC inLab
and Zirkonzahn with taper Λ° Error! Bookmark not defined.
Figure TA: A column chart of retentive force mean values for CEREC inLab
and Zirkonzahn with taper \{° Error! Bookmark not defined.
figure ^{٣٩} : A column chart of retentive force mean values for CEREC InLab
and Zirkonzahn with taper Y·°Error! Bookmark not defined.
Figure ٤ · : A column chart of retentive force mean values for both milling
techniques as function of different tapers Error! Bookmark not defined.
Figure £1: image of intaglio surface of zircon Zahn coping. Error! Bookmark not de
Figure ٤7: image of intaglio surface of CEREC inLab coping. Error! Bookmark not d

ined. fined The traditional porcelain-fused—to-metal fixed partial denture (PFM) is the most popular treatment option for the majority of dentists because of the familiar fabrication techniques and the acceptable esthetic outcome. The frequent gingival discolorations around the metal margins of PFMs, together with some allergic reactions by metal alloys, are still a weak point of these restorations that dissatisfies both patients and dentists. The demand for full ceramic restoration is increased therefore pressure is exerted on industry and science to develop full ceramic system.

Researchers have been developed new high-strength ceramic materials that can be used for the fabrication of core material of fixed restoration. The most recent core material for all ceramic crown is the Yttrium Tetragonal Zirconia Polycrystals (Y-TZP) based material which has excellent mechanical properties, biocompatibility and low bacterial adhesion. The sintering behavior of this material does not allow the fabrication by direct sintering on customized dies, Therefore (Y-TZP) coping can only be fabricated by milling techniques. These milling techniques are either Manual Aided Design/Manual Aided Manufacturing (MAD/ MAM) or Computer Aided Design/Computer Aided Manufacturing (CAD/CAM).

The design of the tooth preparation is an important consideration in tooth reconstruction. The use of certain geometric features in preparations for full coverage restorations has been based largely on experience and individual preference. Early studies of designs of preparations were based on theoretical considerations of the way in which preparation features could be expected to geometrically resist tipping and removal forces. (1), (1)

١

Taper of a complete crown preparation has been the overriding feature shown to aid retention. The aim of this study is to evaluate the effect of different degrees of preparation taper and milling techniques on the retention of Y-TZP copings.

Historical perspectives of ceramics

As early as at the end of the 'th century, all-ceramic restorations, called jacket crowns, were fabricated by firing a feldspathic ceramic material on a die prepared with platinum foil. Jacket crowns were the only fixed esthetic restorations available at that time. (T) Despite their esthetic advantages, the restorations failed to gain widespread popularity because of their high probability of fracture, low strength and poor marginal seal. This technique went out of fashion once the metal-ceramic era began. (1) A noteworthy development occurred in the 'to's, with the addition of leucite to porcelain formulations that elevated the coefficient of thermal expansion to allow their fusion to certain gold alloys to form complete crowns. (T)

In 1979, McLean introduced the idea of fabricating a high-alumina ceramic for the fabrication of FPDs. (°) As further innovation, in 1945 McLean introduced the platinum-bonded alumina FPD to reduce the problem of fracture through the connector area while eliminating the traditional cast metal framework. (7) However, this restorative option demonstrated a high rate of failure at the connector sites. Since then, developments in dental ceramics have led to the introduction of new high-strength ceramics. (V)

Composition, properties and limitations of dental ceramics

Dental ceramics consist of a compound of metals (aluminum, calcium, lithium, magnesium, potassium, sodium, tin, titanium, and zirconium) and nonmetals (silicon, boron, fluorine, and oxygen) that may be used as a single structural component, such as when used for a CAD-CAM inlay, or as one of several layers used for the fabrication of a ceramic-based restoration. Conventional dental porcelain is a vitreous ceramic based on a silica (SiO₇)

network and potash feldspar (KrO·AlYOr·¬SiOr), soda feldspar (NarO·AlrOr·¬SiOr) or both. Pigments, opacifier and glasses are added to control the fusion temperature, sintering temperature, thermal contraction coefficient, and solubility. The feldspars used for dental porcelains are relatively pure and colorless. Therefore, pigments must be added to produce the hues of natural teeth.

Most of the ceramics are characterized by their refractory nature, hardness, and chemical inertness. A hardness of a ceramic similar to that of enamel is desirable to minimize the wear of resulting ceramic restorations, and reduce the wear damage that can be produced on enamel by the ceramic restoration. Chemical inertness ensures that the surface of dental restorations does not release potentially harmful elements, and reduces the risk for surface roughening and an increased susceptibility to bacterial adhesion to insure excellent biocompatibility over time. Furthermore, ceramics demonstrate excellent insulating properties, such as low thermal conductivity, low thermal diffusivity, and low electrical conductivity. Their most attractive property is their potential for matching the appearance of natural teeth, offering great esthetic results. (A) Inspite of their excellent esthetic qualities and biocompatibility, dental ceramics are brittle and contain both fabrication defects and surface cracks, from which fracture can initiate. Forces in the form of tension cause these cracks to open up, followed by crack propagation. (Crack propagation theory). (1)