Delayed Administration of Diphtheria, Pertussis, Tetanus Vaccine and Risk of Development of Childhood Bronchial Asthma

Thesis
Submitted for Partial Fulfillment of
Master Degree in Pediatrics

Presented By

Engy Mahmoud Mahmoud Mustafa Hamza

M.B., B.Ch.

Supervised By

Prof. Mohamed Nasr El-Din El-Barbary

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr.Rania Ibrahim Hossni Ismail

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgment

First of all, I would like to express my deep gratitude to **ALLAH** for his care and generosity throughout my life.

I would like to express my sincere appreciation to **Prof.Dr.Mohamed Nasr El-Din El-Barbary,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his keen supervision and guidance and his overwhelming support that has been of great help throughout this work.

I am very thankful to **Dr.Rania Ibrahim Hossni Ismail,**Lecturer of Pediatrics, Faculty of Medicine, Ain Shams
University for his great support & effort throughout the whole
work.

Engy Hamza

List of Contents

No.	Title	Page
1.	Introduction	1
2.	Aim of the Work	5
3.	Review of Literature	
a)	Epidemiology	6
b)	Etiology	11
c)	Risk factors for Bronchial Asthma	29
d)	Diagnosis of Bronchial Asthma	42
e)	Management of Bronchial Asthma	53
f)	DTP Overview	86
g)	Relationship between Vaccination and Asthma	99
4.	Subjects & Methods	111
5.	Results	119
6.	Discussion	143
7.	Conclusion and Recommendations	163
8.	Summary	165
9.	References	169
10.	Arabic Summary	
11.	Appendices	

List of Figures

No.	Title	Page
1.	Prevalence and mortality from Asthma	
2.	Changes in airway in Asthma	
3.	Pathogenesis of Asthma	
4.	Inflammation in Asthma	
5.	Pathways leading to allergic reactions	
6.	Interaction between Th1 and Th2 in Asthma	
7.	Role of Mast cells in Pathogenesis of Asthma	
8.	A Scheme of Putative immune and inflammatory events associated with the pathophysiology of Asthma	
9.	The Goals of Asthma Management	
10.	Management of Asthma Exacerbation in Children 2-5 years	
11.	Management of Asthma Exacerbation in Children >5 years	
12.	Hypothetical Model illustrating putative	

	effects of common childhood vaccines (Arrows) on the immune balance and atopy.	
13.	Demographic Data in the whole cohort	
14.	a)Delay in DPT vaccination Schedule	
	b)Delay in DPT vaccination schedule	
15.	Prevalence of Asthma in the whole cohort	
16.	Patients characteristics in the studied cohort	
17.	Frequency distribution of risk factors for bronchial asthma in the studied groups	
18.	Frequency of hospitalization (severe cases) of respiratory tract diseases among the studied groups.	
19.	Age at onset of respiratory tract diseases in the studied groups.	
20.	Number of attacks of respiratory tract diseases in the studied groups.	

21.	Descriptive characteristics of asthmatic and non asthmatic children in the whole cohort	
22.	Prevalence of risk factors for asthma in the asthmatic and non-asthmatic children	
23.	Comparative study of associated patient characteristics (Gender-Order of birth-Siblings) and delay in vaccination with the development of bronchial asthma. Comparative study of associated patient characteristics (Age) and delay in vaccination with the development of bronchial asthma.	
24.	Comparison between asthmatic and non-asthmatics as regard risk factors of asthma in the delayed group.	
25.	Comparison between asthmatic and non-asthmatics as regard delay in DPT vaccination schedule.	

List of Tables

No.	Title	Page
1.	Modified Asthma Predictive Index	
	versus the original Asthma Predictive	
	Index	
2.	Classification of Asthma severity by	
	clinical features before Treatment	
3.	Markers of Severe Asthma Exacerbation	
4.	Differential Diagnosis of Bronchial	
	Asthma	
5.	Levels of Asthma Control for children 5	
	years and younger	
6.	Stepwise Approach for Managing	
	Asthma in children ≤ 5 years	
7.	Stepwise Approach for Managing	
	Asthma in children >5 years and Adults	
8.	Available Vaccine Combinations	
9.	Available Vaccine Trade Names	
10.	Demographic Data in the whole cohort	
11.	Delay in DPT vaccination Schedule	

12.	Prevalence of Asthma in the whole
	cohort.
13.	Patients characteristics in the studied
	groups
14.	Frequency distribution of risk factors for
	asthma in the studied groups.
15.	Frequency of hospitalization (severe
	cases) of respiratory tract diseases
	among the studied groups.
16.	Age at onset of respiratory tract diseases
	in the studied groups.
17.	Number of attacks of respiratory tract
	diseases in the studied groups
18.	Characteristics of asthmatic and non
	asthmatic children in the whole cohort.
19.	Prevalence of risk factors for asthma in
	the asthmatic and non-asthmatic children
20.	Comparison between asthmatic and
	non-asthmatics demographic data in the
	delayed group.
21.	Comparison between asthmatic and
	non-asthmatics as regard risk factors of
1	

	asthma in the delayed group.
22.	Comparison between asthmatics and non-asthmatics as regard number of attacks and age of onset of respiratory diseases with the development of asthma in the delayed group
23.	Comparaison between asthmatic and non-asthmatics as regard delay in DPT vaccination schedule
24.	Multiple logistic regression analysis of factors associated with development of Asthma

List of Abbreviations

AIA Aspirin-Induced Asthma

AIT Allergen immunotherapy

BA Bronchial Asthma

BCG Bacille de Calmette et Guérin vaccine

BHR Bronchial Hyper-responsiveness

BTS British Thoracic Society

CDC Centers for disease control and

Prevention

DTP Diphtheria, Tetanus and Pertussis

vaccine

EIA Exercise-induced asthma

FEV Forced Expiratory Volume

FVC Forced vital capacity

GERD Gastroesophageal Reflux Disease

GM-CSF Granulocyte Monocyte-colony

Stimulating Factor

GSK159797 GlaxoSmithKline 159797

HR Hazzard Ratio

HS Highly significant

ICS Inhaled Corticosteroids

IFN Interferon

IL Interleukin

ISAAS International Study of Asthma and

Allergies in Childhood

LABAs Long Acting β 2 Agonists

LBW Low Birth Weight

LTRAs Leukotriene Receptor Antagonist

mAPI Modified asthma predictive index

MMR Measles, Mumps, Rubella vaccine

NHIS American National Health Interview

Survey Immunization Supplement

PAMP Pathogen-associated molecular

patterns

PEF Peak Expiratory Flow

PEFR Peak Expiratory Flow Rate

P_aCO2 Arterial Carbon dioxide

PFTs Pulmonary function tests

P_aO2 ArterialOxygen

RAST Radioallergosorbent test

SABA Short Acting β 2 Agonists

SIGN Scottish Intercollegiate Guidelines

Network

SpO2 Peripheral capillary oxygen saturation

SPSS Statistical package for social science

Tdap Acellular pertussis vaccine

Th1 T-helper 1

Th2 T-helper 2

TLR Toll-like receptors

WHO World Health Organization

Introduction

Asthma is a chronic inflammatory disorder of the airways characterized by an obstruction of airflow, which may be completely or partially reversed with or without specific therapy. Airway inflammation is the result of interactions between various cells, cellular elements, and cytokines. In susceptible individuals, airway inflammation may cause recurrent or persistent bronchospasm, which causes symptoms that include wheezing, breathlessness, chest tightness, and cough, particularly at night (early morning hours) or after exercise. Airway inflammation is associated with hyperreactivity bronchial airway or hyperresponsiveness (BHR), which is defined as the inherent tendency of the airways to narrow in response to various stimuli (eg, environmental allergens and irritants) (National Heart, Lung, and Blood Institute, 1995 & Bateman et al., 2011).

The prevalence of asthma is about 13% of the world's population, and this prevalence is still rising (National Heart, Lung and Blood Institute, 2005 &Bateman et al., 2011).

Childhood asthma is one of the most common childhood diseases in the developed world. The rising prevalence of asthma in many industrialized countries over the last quarter century has occurred alongside improvements in hygienic standards and immunization.

Several studies have suggested either a provocative or protective effect of immunization depending on the specific vaccine, the target population, and the age at which the vaccine was administered and vaccination delays (Mullooly et al., 2002 & McDonald et al., 2008).

Recent evidence indicates that the association with childhood asthma is dependent on the timing of exposure to microbes. Different schedules for immunization may explain the discrepant findings of an association with asthma reported in observational studies of vaccinated children (Williams et al.,2005).

There are two proposed mechanisms by which immunization may influence the development of allergic disease. The first is that vaccination could have a direct impact on the immune system, and there is evidence that pertussis vaccine enhances humans' response to histamine (Sen et al., 1974) and leads to raised immunoglobulin E levels (Odelram et al., 1994). The evidence that early childhood immunizations promote the development of asthma is based on the detection of an IgE response to vaccine antigens in the sera of children vaccinated with diphtheria/tetanus, and the IgE response to vaccine antigens is more pronounced among atopic individuals (Dannemann et al.,1996 & Nilsson et al.,1998a).

The second potential mechanism is commonly known as the hygiene hypothesis (Strachan,1989 & Karmaus and Botezan, 2002).