

Ain Shams University Faculty of Engineering Electrical Power and Machines Dept.

FUNCTION BASED OPTIMIZED PROTECTION SCHEMES FOR DISTRIBUTION SUBSTATIONS

M.Sc. Thesis By

Eng. Mohamed Ahmed Afifi

Submitted in Partial Fulfillment of the Requirements for the degree Master of Science in Electrical Engineering

Supervised By

Prof.Dr. Soliman M. EI-Debeiky

Professor-Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Dr. Amr Magdy Abdien

Electrical Power and Machines
Department
Faculty of Engineering, Ain
Shams University

Dr. Waleed Helmy Abd Elhamid

Electrical Power and Machines
Department
Faculty of Engineering, Ain Shams
University

Cairo 2014

Approval Sheet

For the Thesis:

Function Based Optimized Protection Schemes for Distribution Substations

By:

Eng. Mohamed Ahmed Afifi

A thesis submitted to the Faculty of Engineering –Ain Shams University in partial fulfillments of the requirements for the Master Degree in Electrical Power and Machines Engineering

Approved by

<u>Name</u> <u>Signature</u>

Prof. Dr. Soliman M. EI-Debeiky

Professor Electric Power and Machine Department Faculty of Engineering- Ain Shams University

Dr. Waleed Helmy Abd el Hamid

Electric Power and Machine Department Faculty of Engineering- Ain Shams University

Dr. Amr Magdy Abdien

Electric Power and Machine Department Faculty of Engineering- Ain Shams University

Examiners Committee

For the Thesis:

Function Based Optimized Protection Schemes for Distribution Substations

By:

Eng. Mohamed Ahmed Afifi

A thesis submitted to the Faculty of Engineering –Ain Shams University in partial fulfillments of the requirements for the Master. degree in Electrical Power and Machines Engineering

Name, title and affiliation

Signature

Prof. Dr. Ahdab Mohamed Kamel El-Morshedy

Professor Electric Power and Machine Department Faculty of Engineering- Cairo University

Prof. Dr. EL-Moataz Yousef Abd El-Aziz

Professor Electric Power and Machine Department Faculty of Engineering- Ain Shams University

Prof. Dr. Soliman M. EI-Debeiky

Professor Electric Power and Machine Department Faculty of Engineering- Ain Shams University Dedicated to my father, my beloved mother and brothers, my lovely wife.

Also, dedicated to everyone tried to help me, all my teachers, professors, my family and friends

STATEMENT

This thesis is submitted to Ain Shams University in

partial fulfillment of the requirements for the M.Sc.

Degree in Electrical Engineering (Power and Machines).

The work included in this thesis is carried out by the

author at the Electrical Power and Machines Department,

Ain Shams University. No part of this thesis has been

submitted for a degree or a qualification at any other

university or institute.

•

Name

Mohamed Ahmed Afifi

Signature

Date

2014

ACKNOWLEDGMENT

My deepest gratitude and sincere thanks to **Prof. Dr. Soliman M. EI-Debeiky and Dr. Waleed Helmy** for their kind supervision, suggestion of this research work topic and plan, continuous help, support and caring through the various stages of this work.

My deepest gratitude and appreciation to **Dr. Amr Magdy Abdien**, for every good help, unfailing discussions, significant assistance, valuable proposals, and continuous guidance.

Mohamed Afifi

Table of Contents

List of tables	
List of figures	
Symbols and nomenclature	
Chapter (1): INTRODUCTION	1
1.1 RESEARCH MOTIVATION	1
1.2 AIM OF PRESENT WORK	2
1.3 THESIS OUTLINE	3
Chapter (2): BASIC PRINCIPLES OF PROTECTION	5
2.1 HISTORY OF PROTECTION RELAYS	5
2.2 BENEFITS OF MICROPROCESSOR-BASED RELAYS	7
2.3 SHORTCOMINGS OF MICROPROCESSOR-BASED RELAYS	10
2.4 INTERNATIONAL STANDARDS	12
2.5 PROTECTION CHAIN	13
Chapter (3): LITERATURE REVIEW	21
3.1 INTRODUCTION	21
3.2 METHODS OF PROVIDING SENSITIVE BUS FAULT PROTECTION	25
3.3 CURRENT-ONLY DIRECTIONAL OVERCURRENT PROTECTION FOR	
DISTRIBUTION AUTOMATION	32
3.4 CONSIDERATIONS IN SETTING INSTANTANEOUS OVERCURRENT (IC	
RELAYS ON TRANSMISSION LINES	37
3.5 AN INTELLIGENT ALGORITHM FOR THE PROTECTION OF SMART	
POWER SYSTEMS	41

3.6	FUTURE DISTRIBUTION FEEDER PROTECTION USING DIRECTIONAL	
OVE	RCURRENT ELEMENTS	49
Chapt	er (4): SYSTEM UNDER STUDY	58
4.1	INTRODUCTION	58
4.2	SYSTEM UNDER STUDY	62
Chapt	er (5): ENHANCEMENT OF OVER CURRENT PROTECTION	67
5.1	CONVENTIONAL OVER CURRENT PROTECTION	67
5.2	ENHANCED OVER CURRENT PROTECTION WITH VOLTAGE RESTRAIN	77
5.3	ENHANCED OVER CURRENT PROTECTION FOR COLD LOAD PICKUP	89
5.4	DISCUSSION AND ANALYSIS OF RESULTS	99
5.5	CONCLUSION	L00
Chapt	er (6): ENHANCEMENT OF DIRECTIONAL OVER CURRENT	
PROTE	ECTION 1	L 01
6.1	CONVENTIONAL DIRECTIONAL OVER CURRENT PROTECTION 1	L01
6.2	ENHANCED DIRECTIONAL OVER CURRENT PROTECTION FOR DG	
PEN	ETRATION 1	L16
	ENHANCED OPTIMIZED DIRECTIONAL OVER CURRENT PROTECTION	
USIN	NG CURRENT ONLY 1	L38
6.4	DISCUSSION AND ANALYSIS OF RESULTS	L61
6.5	CONCLUSION	L61
Chapt	er (7): CONCLUSIONS AND FUTURE WORKS 1	L63
7.1	CONCLUSIONS 1	L63
7.2	SUGGESTIONS FOR FUTURE WORKS 1	L64
Apper	ndix A 1	166

Appendix B	174
Appendix C	179
LIST OF REFERENCES	181

List of Tables

Chapter (2): BASIC PRINCIPLES OF PROTECTION
TABLE 2.1. ANSI to IEC
Chapter (3): LITERATURE REVIEW
Table 3.1: Programming variables used in relay
Chapter (5): ENHANCEMENT OF OVER CURRENT PROTECTION
Table 5.1: Relay characteristics According to IEC 60255 68
Table 5.2: Relay characteristics according to North American
Table 5.3: Characteristics of overcurrent micro-processor protection relay
Table 5.4: Summary of fault results of conventional versus voltage restrained overcurrent protection
Table 5.5: Summary of fault results of conventional versus cold load pickup overcurrent protection
Chapter (6): ENHANCEMENT OF DIRECTIONAL OVER CURRENT PROTECTION
Table 6.1: Summary of results of faults for conventional directional protection
Table 6.2: Summary of results for LG faults for conventional directional protection
Table 6.3: Comparison between Conventional and Enhanced Directional Over Current Protection for LG Faults

Table 6.4: Summary of Results of Conventional Directional Overcurrent protection for LLG faults	
Table 6.5: Comparison between Conventional and Enhanced Direction Over Current Protection for LLG faults	
Table 6.6: Summary of Results of Conventional Directional Overcurrent protection for LLLG faults	
Table 6.7: Comparison between Conventional and Enhanced Direction Over Current Protection for LLLG Faults	
Table 6.8: Summary of Results of LG Faults in FWD and REV regions uncurrent only directional protection	
Table 6.9: Summary of Results of LLG Faults in FWD and REV regions uncurrent only directional protection	
Table 6.10: Summary of Results of LLLG Faults in FWD and REV regions under current only directional protection	

List of Figures

Chapter	(2): DASIC PRINCIPLES OF PROTECTION	
Figure 2	2.1: The protection chain	14
Figure 2	2.4: The saturation curve of CT	15
Figure 2	2.5: The connection of potential transformer	16
Figure 2	2.6: The connection of capacitive voltage transformer	17
Figure 2	2.7: The SF ₆ Circuit breakers	18
Figure 2	2.8: The Vacuum Circuit breakers	19
Chapter ((3): LITERATURE REVIEW	
Figure 3	3.1: Generalized digital relay structure	23
Figure 3	3.2: Typical bus protection method for an industrial facility	26
Figure 3	3.3: Typical coordination between feeder relay and main bus relay	y .
		27
Figure 3	3.4: Simplified diagram of digital relay	29
Figure 3	3.5: Enhanced bus protection scheme	30
Figure 3	3.6: Feeder and bus relay interconnection	31
Figure 3	3.7: Coordination with enhanced bus protection scheme	31
Figure 3	3.8: Overcurrent relay: forward (F) and reverse (R) fault	33
J	3.9: Phasor diagram for (a) reverse and forward fault and (b)	34
Figure 3	3.10: Current-only directional detection methods	35
Figure 3	3.11: Directional analysis using zero crossing time deviations	36

	Figure 3.12: Signal processing view of ZCD-based time-domain approach	١.
		38
	Figure 3.13: Conventional vertically-operated power system	. 42
	Figure 3.14: Horizontally-operated power system	. 44
	Figure 3.15: Delay components of the total fault clearing time	49
	Figure 3.16: Typical wind farm collection circuit	. 51
	Figure 3.17: Wind turbine with LV main breaker	. 52
	Figure 3.18: Time overcurrent coordination with WTGSU fuse and 1/0	
	lateral cable	53
	Figure 3.19: Phase directional element impedance diagram	. 54
	Figure 3.20: Phase directional element I1 versus V1	. 55
	Figure 3.21: Unity PF output on a collector	. 56
	Figure 3.22: Collector relay trip on low PF	. 56
	Figure 3.23: Typical load encroachment impedance diagram	. 57
C	hapter (4): SYSTEM UNDER STUDY	
	Figure 4.1: SLD for 66/11kv KOBBA Substation	64
	Figure 4.2: SLD of 66/11kv KOBBA Substation by using ETAP	65
	Figure 4.3: Fault location	66
C	hapter (5): ENHANCEMENT OF OVER CURRENT PROTECTION	
	Figure 5.1: Block diagram of conventional over current protection	67
	Figure 5.2: IEC 60255 relay characteristics at TMS=1	69
	Figure 5.3: North American IDMT relay characteristics TD=7	. 71
	Figure 5.4: MATLAB SIMULINK Model of Conventional Over Current Rela	ìу
		74

Figure 5.5: MATLAB SIMULINK model of current/time characteristics 75
Figure 5.6: Fault location for conventional overcurrent protection 76
Figure 5.7: Current signal during fault Under Conventional Over Current Protection
Figure 5.8: Voltage Signal during fault Under Conventional Over Current Protection
Figure 5.9: Block diagram of over current protection with voltage restrain 78
Figure 5.10: New current setting curve according to voltage level 79
Figure 5.11: Matlab Simulink Model of Overcurrent protection with voltage restrain
Figure 5.12: Matlab Simulink Model of Enabling Block of Overcurrent protection with voltage restrain
Figure 5.13: Matlab Simulink Model of Calculating Is* Block of Overcurrent protection with voltage restrain
Figure 5.14: Matlab Simulink Model of Calculating Tripping time Block of Overcurrent protection with voltage restrain
Figure 5.15: Connecting important loads to backup generator 85
Figure 5.16: Fault location for conventional and voltage restrained overcurrent protection
Figure 5.17: Current Signal During fault under Conventional Phase overcurrent protection
Figure 5.18: Voltage signal During fault under Conventional Phase overcurrent protection
Figure 5.19: Current Signal During fault under Overcurrent protection with voltage restrain