

College of Science Physics Department

Thermo-Physical Studies on Synthesized Lightweight Nano Cementitious Materials

Thesis

Submitted for the Degree of Doctor of Philosophy (Ph.D.) in Science-Physics (Solid State Physics)

By

Hamada Shoukry Mohamed

M.SC. Cairo University, 2011

Housing & Building National Research Center (HBRC)

To

Physics Department, Faculty of Science, Ain Shams University

2017

College of Science Physics Department

Thermo-Physical Studies on Synthesized Lightweight Nano Cementitious Materials

Thesis

Submitted for the Degree of Doctor of Philosophy (Ph.D.) in Science-Physics (Solid State Physics)

By

Hamada Shoukry Mohamed

M.SC. Cairo University, 2011

Housing & Building National Research Center (HBRC)

To

Physics Department, Faculty of Science, Ain Shams University

Supervisors

- Prof. Dr. Sc. Mohamed Fathy Kotkata
 Professor of physics, Ain shams university
- Prof. Dr. Sc. Salah Abo El-Enein
 Professor of physical chemistery, Ain shams university
- Prof. Dr. Mohamed Saad Morsy
 Professor of building physics, HBRC
- Prof. Dr. Sayed Shebl Mohamed
 Professor of building physics, HBRC

College of Science Physics Department

Approval Sheet

Title:

Thermo-Physical Studies on Synthesized Lightweight
Nano Cementitious Materials

Candidate: Hamada Shoukry Mohamed Mohamed

Degree: Doctor of Philosophy (Ph.D.) in Science-Physics (Solid State Physics)

Supervision Committee

Approved by Signature

- 1. Prof. Dr. Sc. Mohamed Fathy Kotkata

 Professor of physics, Ain shams university
- 2. Prof. Dr. Sc. Salah Abo El-Enein

 Professor of physical chemistery, Ain shams university
- Prof. Dr. Mohamed Saad Morsy
 Professor of building physics, HBRC
- **4.** Prof. Dr. Sayed Shebl Mohamed *Professor of building physics, HBRC*

Dedication

To the spirit of my father,

As well as my mother

To my wife, brothers, sisters and

my SONs

I dedicate this Research

Acknowledgements

Firstly, I pay my deepest gratitude to Almighty Allah for His graciousness, benevolence and unlimited blessing upon me.

I would like to express my deep gratitude to my supervisors; Prof. Dr. Sc. Mohamed Fathy Kotkata, Professor of Solid State Physics, Department of Physics, Faculty of Science, Prof. Dr. Sc. Salah Abo El-Enein, Chemistry Department, Faculty of Science, Ain Shams University, Prof. Dr. Mohamed Saad Morsy and Prof. Dr. Sayed Shebl, Building Physics institute, Housing and Building National Research Center (HBRC) their kind supervision, invaluable suggestion and guidance throughout this research work.

My very special thanks and gratefulness goes to my wife Rahma Ahmed and my colleagues for their cordial cooperation and support. Finally I thank my dear friends for their encouragements

CONTENTS

	Title	Page
	CONTENTS	i
	LIST OF FIGURES	iv
	LIST OF TABLES	viii
	LIST OF SYMBOLS AND ABBREVIATIONS	ix
	ABSTRACT	xi
	CHAPTER 1	
	INTRODUCTION & LITERATURE REVIEW	
1.1	Problem Statement	1
1.2	Objectives and Scope of Thesis	2
1.3	Organization of the Thesis	2
1.4	Mortar, Plaster and Render: An Overview	4
1.5	Lightweight Aggregates (LWA)	6
1.5.1	Natural Lightweight Aggregates	7
1.5.1.1	Pumice Aggregates	7
1.5.2	Artificial Lightweight Aggregates	8
1.5.2.1	LWA from Perlite	8
1.5.2.2	LWA from Vermiculite	9
1.5.2.3	LWA from Expanded Clay (Leca)	9
1.5.2.4	Expanded Pelletized Fly Ash Aggregates	9
1.5.2.5	Expanded Slag Gravel, ESG-1	10
1.6	Fiber-Reinforced Cements	11
1.6.1	Nature of Fiber-Matrix Interactions	12
1.6.1.1	Fiber-Matrix Interactions in the Freshly Mixed State	13
1.6.1.1.1	Mixture Consistency or Workability	14
1.6.1.1.2	Effect of Fiber Aspect Ratio	14
1.6.1.1.3	Compatibility with the Manufacturing Process	14
1.6.1.2	Fiber-Matrix Interactions in the Hardened State	15
1.6.1.2.1	Intrinsic Fiber Properties	16
1.7	Nanoscience and Nano-engineering of Cement-Based Materials	17
1.8	Literature Review	19
1.8.1	Characteristics of Cement – Based Nanomaterials	19
1.8.2	Development of Fiber-Reinforced Cement Composites	24
1.8.3	Hybrid Effect of Natural Fibers and Nanoparticles on Physico-	28
	Mechanical Properties of Cement and Concrete Composites	
1.8.4	Properties of Lightweight Cement Based Materials	30

CHAPTER 2

MATERIALS CHARACTERIZATION & EXPERIMENTAL METHODS

2.1	Materials	35
2.1.1	White Portland Cement	35
2.1.2	Nano Kaolin Clay	36
2.1.3	Natural fiber	38
2.1.4	Lightweight aggregates (LWA)	39
2.1.4.1	Expanded perlite	39
2.1.4.2	Expanded Vermiculite (EVM)	41
2.2	Mixture Proportions and Specimen Preparation	43
2.2.1	Development of fiber reinforced nano metakaolin cementitious composites	43
2.2.2	Development of nanostructured lightweight fiber reinforced perlite cementitious composites (NLWFRCC)	44
2.2.3.	Development of nanostructured lightweight vermiculite cement composites	45
2.3	Test procedures and techniques	47
2.3.1	Compressive strength	47
2.3.2	Flexural strength	47
2.3.3	Capillary water absorption (sorptivity) test	48
2.3.4	Bulk density	49
2.3.5	Thermal conductivity test	49
2.3.6	Reflectivity measurement	51
2.3.7	X-ray diffraction (XRD)	51
2.3.8	X-ray Fluorescence (XRF)	53
2.3.9	Differential Scanning Calaorimetry (DSC)	54
2.3.10	Thermogravimetric Analysis (TGA)	55
2.3.11	Microstructure Characterization and Energy Dispersive X-ray	56
	Spectroscopy	
	CHAPTER 3	
	CHARACTERISTICS OF FIBER REINFORCED NANO CLAY-CEMENT COMPOSITES	
3.1	Introduction	57
3.2	Thermal Activation of Nano Kaolin (NK)	59
3.3	Flexural Strength of Fiber Reinforced Cement Composites (FRCC)	63
3.4	Capillary Water Absorption (Sorptivity) of FRCC	64
3.5	Effect of NMK on Flexural Strength of FRCC	65
3.6	Effect of NMK on Capillary Water Absorption of FRCC	67
3.7	Thermogravimetric Analysis (TGA)	68
3.8	X-ray Diffraction Analysis (XRD)	70
3.9	Microstructure Characterization by SEM & EDAX	71

CHAPTER 4

	CHARACTERISTICS OF FIBER REINFORCED	
	PERLITE-CEMENTITIOUS COMPOSITES MODIFIED	
	WITH NANO METAKAOLIN	
4.1	Introduction	74
4.2	Bulk Density and Thermal Conductivity	77
4.3	Flexural Strength	79
4.4	Capillary Water Absorption (Sorptivity)	81
4.5	Thermo-Gravimetric Analysis (TGA)	82
4.6	Reflectivity	83
4.7	Microstructure Characteristics	84
	CHAPTER 5	
	CHARACTERISTICS OF LIGHTWEIGHT	
	VERMICULITE CEMENT COMPOSITES MODIFIED	
	WITH NANO METAKAOLIN	
5.1	Introduction	86
5.2	Volume Expansion Behavior of Vermiculite	88
5.3	Influence of NMK on Mechanical Performance of Lightweight	90
	Vermiculite-Cement Composites	
5.3.1	Compressive Strength	90
5.3.2	Flexural Strength	92
5.4	Capillary Water Absorption (Sorptivity)	94
5.5	Bulk Density and Thermal Conductivity	95
5.6	Differential Scanning Calaorimetry (DSC)	96
5.7	Heat of Decomposition (Enthalpy)	97
5.8	Microstructure characteristics	98
	CHAPTER 6	
	THE IMPACT OF NLWFRCC ON ENERGY	
	EFFICIENCY OF RESIDENTIAL BUILDINGS IN	
	EGYPT	
6.1	Introduction	100
6.2	Energy Simulation	101
6.2.1	Base House	101
6.2.2	Climate	105
6.2.3	Impact of NLWFRCC on Energy Efficiency in Buildings	108
	CHAPTER 7	
	Summary and Conclusions	110
	References	113
	Published Articles	123

LIST OF FIGURES

Title	Page
Glass fiber-reinforced cement	11
Fiber forms and types	13
Fig. 1.3 (a) Packing of mono-sized spheres (b) The packing density	18
of the system can be significantly increased by using an initial mix	
with particle size distribution.	
X-ray diffraction pattern of NMK	37
SEM micrograph of NMK	37
SEM micrographs of linen fiber (a) surface and (b) internal structure	38
XRD pattern of expanded perlite aggregates	40
SEM micrograph of expanded perlite	40
X-ray diffraction pattern of EVM	42
SEM micrograph and EDAX analysis of EVM granules	42
(a) Samples for flexural strength test, (b) Dispersion of NMK by	43
ultrasonic	
Photo of the prepared nanostructured lightweight fiber reinforced	45
perlite cementitious composites (NLWFRCC)	
Photo of the prepared nanostructured lightweight vermiculite	46
cement samples as per ASTM standards	
Schematic of compressive strength test	47
Schematic of 3-point flexure test	48
Experimental set up of capillary water absorption test	48
Schematic for conduction of heat along a plane wall	50
Thermal conductivity test apparatus	50
Double beam spectrophotometer and its optical system	51
X-ray diffraction technique	52
Schematic of X-ray diffraction Fluorescence technique	53
	Glass fiber-reinforced cement Fiber forms and types Fig. 1.3 (a) Packing of mono-sized spheres (b) The packing density of the system can be significantly increased by using an initial mix with particle size distribution. X-ray diffraction pattern of NMK SEM micrograph of NMK SEM micrographs of linen fiber (a) surface and (b) internal structure XRD pattern of expanded perlite aggregates SEM micrograph of expanded perlite X-ray diffraction pattern of EVM SEM micrograph and EDAX analysis of EVM granules (a) Samples for flexural strength test, (b) Dispersion of NMK by ultrasonic Photo of the prepared nanostructured lightweight fiber reinforced perlite cementitious composites (NLWFRCC) Photo of the prepared nanostructured lightweight vermiculite cement samples as per ASTM standards Schematic of compressive strength test Schematic of 3-point flexure test Experimental set up of capillary water absorption test Schematic for conduction of heat along a plane wall Thermal conductivity test apparatus Double beam spectrophotometer and its optical system X-ray diffraction technique

2.19	Differential Scanning Calorimeter "Schimadzu DSC-50"	54
2.20	Schimadzu TGA-50	55
2.21	Scanning electron microscope (SEM JEOL 6360)	56
3.1	X-ray diffraction pattern of NK	59
3.2	DTA thermogram of nano kaolin	60
3.3	Degree of de-hydroxylation versus calcination temperatures of NK	61
3.4	X-ray diffraction pattern of NMK	61
3.5	TEM images of nano clay particles, (a): Inactivated, (b): Activated	62
3.6	Flexural strength of FRCC as a function of fiber ratio at 28 days of curing	63
3.7	Capillary absorption coefficient of FRCC as a function of fiber ratio at 28 days of curing	64
3.8	Flexural strength of NMK-modified FRCC versus NMK content at 28 days of curing	65
3.9	Flexural strength of plain and fiber reinforced nano metakaolin cement composite	66
3.10	Capillary absorption coefficient of NMK-modified FRCC as a function of NMK ratio at 28 days of curing	67
3.11	TGA thermograms of plain and 10% NMK-modified FRCC	68
3.12	CH content of plain and NMK-modified FRCC at 28 days of curing	69
3.13	XRD Patterns for Plain and NMK – modified FRCC at 28 Days of curing	70
3.14	SEM micrographs of FRCC with different fiber ratios,	71
	(a) 0%, (b) 0.5%, (c) 2% and (d) 3%	
3.15	SEM micrographs of plain and NMK-modified FRCC, (a) 0% NMK, (b and C) 10% NMK	73
4.1	variations in bulk density and thermal conductivity of NLWFRCC	77
4.2	as a function of the perlite replacement ratios	5 0
4.2	Reduction rates of thermal conductivity (TC) for all designed mixes	79

4.3	Flexural strength of NLWFRCC as a function of perlite percentages	80
	at 28days of curing	
4.4	Capillary absorption coefficient of NLWFRCC as a function of	81
	perlite percentages at 28days of curing	
4.5	TGA and DTG of plain composite (M0) and the composite	82
	incorporating 70% perlite (M7) at 28 days of curing	
4.6	Reflectivity of NLWFRCC as a function of wavelength	83
4.7	SEM micrographs of NLWFRCC made with different perlite ratios:	84
	(a) 0%, (b) 10%, (c) 30%, (d) 50% and (e) 70%	
5.1	SEM morphologies of (a) VM-Raw and (b) EVM-600	88
5.2	Mechanism of exfoliation: (a) particle variously consisting of	89
	intergrown mosaic of vermiculite, hydrobiotite and mica domains	
	(or vermiculite and chlorite domains). Gas phases produced by	
	shock thermal treatment, or breakdown of hydrogen peroxide are	
	trapped in dead ends at phase boundaries causing pressure build up.	
	The result (b) is exfoliation of the layers	
5.3	Measured BET surface areas of the VM-Raw and the EVM-600	90
5.4	Variations of compressive strength as a function of NMK content at	91
	28d of curing	
5.5	Variations of flexural strength as a function of NMK content at 28d	92
	of curing	
4.5	TGA and DTG of plain composite (M0) and the composite	82
	incorporating 70% perlite (M7) at 28 days of curing	
4.6	Reflectivity of NLWFRCC as a function of wavelength	83
4.7	SEM micrographs of NLWFRCC made with different perlite ratios:	84
	(a) 0%, (b) 10%, (c) 30%, (d) 50% and (e) 70%	
5.1	SEM morphologies of (a) VM-Raw and (b) EVM-600	88

5.2	Mechanism of exfoliation: (a) particle variously consisting of intergrown mosaic of vermiculite, hydrobiotite and mica domains (or vermiculite and chlorite domains). Gas phases produced by shock thermal treatment, or breakdown of hydrogen peroxide are trapped in dead ends at phase boundaries causing pressure build up. The result (b) is exfoliation of the layers	89
5.3	Measured BET surface areas of the VM-Raw and the EVM-600	90
5.4	Variations of compressive strength as a function of NMK content at	91
	28d of curing	
5.5	Variations of flexural strength as a function of NMK content at 28d	92
	of curing	
5.6	Flexural strength vs compressive strength (MPa)	93
5.7	Variation of capillary water absorption as a function of NMK	94
	content at 28 days of curing	
5.8	DSC Thermograms of the 10% NMK-modified mix (M5) as	96
	compared with the control mix (M0)	
5.9	Variations of the decomposition heat for CSH and CH phases at 28	97
	days of curing as a function of NMK %	
5.10a	SEM micrographs and EDAX patterns of selected areas of the	99
	control mix (M0)	
5.10b	SEM micrographs and EDAX patterns of selected areas of 10%	100
	NMK-modified mix (M5)	
6.1	Layout of the base house model	102
6.2	Floor plan of the building model	102
6.3	Comparison of the real and simulated total energy consumption	103
6.4	Annual weather data of Cairo city	105
6.5	Annual cooling energy consumption for the base house	106
6.6	Distribution of peak cooling load for the base house	107
6.7	Annual cooling energy consumption for the house plastered with	109
	NLFRCC	

LIST OF TABLES

Table	Title	Ροσο
No.	Title	Page
1.1	Comparison of the properties of different binders used for mortars, plasters, and renders	4
1.2	Physical and mechanical properties of different types of fibers used in cement concrete structures	25
2.1	Chemical composition of WPC	35
2.2	Physical properties of WPC	35
2.3	Chemical composition of NMK	36
2.4	Physical properties of linen fiber	38
2.6	Physical properties of perlite	39
2.7	Chemical composition of EVM	41
2.8	physical properties of EVM granules	42
2.9	Mix design of the fiber reinforced cement modified with NMK	43
2.10	Mix design of NLWFRCC (mass expressed per 1m3)	44
2.11	Mix design of the developed nanostructured lightweight vermiculite cement composites (mass expressed per 1m3)	46
3.1	Mass loss (%) of NK at different calcination temperatures	60
4.1	Reduction rates of thermal conductivity (TC) for all designed mixes	79
5.1	Density and thermal conductivity variations of the prepared mortars	95
6.1	Characteristics of the architectural system for the house model	103
6.2	people, internal loads and specifications of air conditioning system	104
6.3	Thermo-physical characteristics of building envelope for the house model	105
6.4	Thermo-physical characteristics of building envelope for the house plastered with NLWFRCC	108

LIST OF SYMBOLS AND ABBREVIATIONS

ASTM American Society of Testing and Materials

C₃A Tricalcium Aluminate, 3CaO. Al₂O₃

C₄AF Tetracalcium AluminoFerrite, 4CaO. Al₂O₃. Fe₂O₃

C₂S Dicalcium Silicate, 2CaO. SiO₂

C₃S Tricalcium Silicate, 3CaO. SiO₂

CH Calcium Hydroxide, Ca(OH)₂

CSH Calcium Silicate Hydrate

DSC Differential Scanning Calaorimetry

DTG Derivative Thermogravimetry

EDAX Energy Dispersive Analytical X-ray spectroscopy

EVM Expanded Vermiculite

FRCC Fiber-Reinforced Cement Composites

hcp Hydrated Cement Paste

ITZ Interfacial Transition Zone

LWA Lightweight Aggregates

LWFRCC Lightweight Fiber-Reinforced Cement Composites

L.O.I Loss on Ignition

NLWFRCC Nanostructured Lightweight Fiber-Reinforced Cement

Composites

NC Nano Clay

NMK Nano Metakaolin

NCB Nano Clay Cement Binder

R-value Thermal Resistance

Rsi Inside Surface Resistance

Rso Outside Surface Resistance

SEM Scanning Electron Microscope

SSA Specific Surface Area

TEM Transmission Electron Microscope

TGA Thermogravimetric Analysis

TC Thermal Conductivity

U-value Overall Thermal Transmittance

WPC White Portland Cement

XRD X-Ray Diffraction

XRF X-Ray Fluorescence