

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy

Micro/Nanocomposite Drug Delivery Systems for Targeting Lung Cancer

A Thesis Submitted for Partial Fulfillment of the Requirements for the Master Degree of Pharmaceutical Sciences (Pharmaceutics)

By

Raneem Moustafa Jatal

Bachelor of Pharmaceutical Sciences, 2011

Under the supervision of

Prof. Dr. Gehanne A.S. Awad

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Dr. Rihab Osman Ahmed

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Dr. Wael Mamdouh Sayed

Assistant Professor of Nanotechnology
Department of Chemistry
School of Sciences and Engineering
The American University in Cairo (AUC)

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University, Cairo, Egypt (2017)

 M_{MM}

Acknowledgements

First of all, thanks to *Almighty GOD* by the grace of whom this work was successfully achieved.

I wish to express my sincere thanks to *Prof. Dr. Gehanne Abd El-Samie Awad*, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her instructive supervision and encouragement throughout this work.

I am extremely grateful and indebted to *Dr. Rihab Osman Ahmed*, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her expert, sincere valuable guidance, encouragement and great effort she devoted for the completion of this thesis.

I would like to express my deep appreciation to *Dr. Wael Mamdouh Sayed*, Assistant Professor of Chemistry, Faculty of Science and Engineering, The American University in Cairo for his guidance and generous support throughout this work.

I would like also to express my sincere thanks to all my *Colleagues and faculty members* of Pharmaceutics and Industrial Pharmacy department at Ain Shams University, and my *Colleagues* at the Chemistry department of The American University in Cairo for their help and encouragement.

No words could ever be enough to express my deep thanks and appreciation to my beloved family (My father, my mother and my brothers; Kareem and Tamim) for their great support, patience and their everlasting encouragement throughout this work and also for the faith they put in my dreams.

Raneem Moustafa Jatal
2017

List of Contents

Item	Page
List of Abbreviations	I
List of Equations	VI
List of Tables	VII
List of Figures	X
Abstract	XVIII
General Introduction	1
Scope of Work	16
Chapter 1: Preparation and Evaluation of Magnolol loaded	
Hybrid spray dried Microparticles.	
• Introduction	18
• Experimental	
1. Materials	27
2. Equipment	28
3. Methodology	30
3.1. Spectrophotometric assay of Magnolol	30
3.2. Fabrication of Magnolol loaded CS/PLP hybrid MP	30
3.2.1. Preparation of Magnolol loaded CS-MP	31
3.2.1.1. Spray drying of Magnolol alone	31
3.2.1.2. Preparation of plain chitosan SD-MP using different acids	31

3.2.1.3. Preparation of Magnolol loaded CS S-MP	31
3.2.2. Preparation of Magnolol loaded hybrid CS/PLP SD-MP	32
3.2.2.1. Preparation of Magnolol loaded hybrid CS/PC SD-MP	32
3.2.2.2. Preparation of Magnolol loaded hybrid CS/DSPC SD-MP	33
3.2.2.3. Preparation of Magnolol loaded hybrid CS/DPPG-Na SD-MP by an emulsion spray drying method	34
3.3. Characterization of the spray dried powders (SDP)	36
3.3.1. Determination of the powder yield	36
3.3.2. Determination of powder flowability	36
3.3.3. Determination of Drug association efficiency (AE%)	38
3.3.4. Moisture content determination	38
3.3.5. Particle size (PS) determination	39
3.3.6. Calculation of mass median aerodynamic diameter (MMAD)	39
3.3.7. Scanning electron microscopy (SEM)	39
3.3.8. X-Ray powder diffraction (XRPD)	40
3.3.9. In vitro Magnolol release study	40
3.3.10. In vitro aerodynamic deposition	40
3.3.11. Differential scanning calorimetry	43

3.3.12. Fourier transform infrared (FT-IR) spectroscopy	43
3.3.13. Cytotoxicity evaluation by MTT assay	44
4. Statistical analysis	46
Results and Discussion	47
Conclusion	111
Chapter 2: Preparation and Evaluation of Magnolol loaded	
Composite Nano Carriers by Electrospinning.	
• Introduction	113
• Experimental	121
1. Materials	121
2. Equipment	122
3. Methodology	124
3.1. Experimental design	124
3.2. Preparation of plain CS/PVA electrospun systems	128
3.2.1. PVA and CS solution preparation	128
3.2.2. Electrospinning method	128
3.3. Preparation of Magnolol loaded CS/PVA NF by electrospinning	128
3.4. Preparation of Magnolol loaded CS/PVA NP by electrospinning	128
3.5. Preparation of electrospun Magnolol loaded NP incorporated in SD MP	129

4. Characterization of the solutions prepared for electrospinning	130
4.1. Determination of viscosity	130
4.2. Determination of conductivity	131
5. Evaluation of electrospun delivery systems	131
5.1. Visual examination	131
5.2. Determination of the morphology, diameter and particle size (PS) distribution of the electrospun delivery systems	132
5.2.1. Scanning electron microscopy (SEM)	132
5.3. Determination of the encapsulation efficiency (EE%)	133
5.4. In vitro Mag release study	133
5.5. Differential scanning calorimetry (DSC)	134
5.6. Fourier transform infrared (FT-IR) spectroscopy	134
5.7. Physical integrity of the NF and NP mats	134
5.8. Evaluation of SD Mag loaded NP-embedded in MP (NEM)	135
5.9. Cytotoxicity evaluation	135
6. Statistical analysis	136
Results and Discussion	137
Conclusion	195
General conclusion	197
Summary	199

List of Contents

Future Perspectives	207
References	208
Appendix I	
Published poster	
Arabic Summary	

List of Abbreviations

Ac.A	Acetic acid
A549	Human lung cancer cells
AE%	Association efficiency
AM	Alveolar macrophages
Asp.A	Aspartic acid
Chl	Chloroform
CI	Compressibility Index
Conc	Concentration
CS	Chitosan
$\mathbf{d}_{\mathbf{A}}$	Aerodynamic diameter
$\mathbf{d_g}$	Geometric diameter
DMEM	Dulbecco's Modified Eagle's medium
DMSO	Dimethyl sulfoxide
DPI	Dry powder inhalers
DPPC	Dipalmitoyl phosphatidylcholine
DPPG-Na	1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt
DSC	Differential scanning calorimetry
DSPC	Distearoyl-phosphatidylcholine

ECM	Extracellular matrix
ED	Emitted dose
EE	Encapsulation efficiency
EF	Emitted fraction
EGF	Epidermal growth factor
EGFR	Epidermal growth factor receptor
EI	Effective inhalation index
EPC-3	Hydrogenated egg phosphatidylcholine
EPC-S	Egg phosphatidylcholine
EtOH	ethanol
FBS	Fetal bovine serum
FPF	Fine particle fraction
FT-IR	Fourier transform infrared spectroscopy
GRP	Gastrin-releasing peptide
h	hour
НВЕС	Human bronchial epithelial cell
HCl	Hydrochloric acid
HR	Hausner ratio
IC50	The half maximal inhibitory concentration
ILGF-1	Insulin-like growth factor 1

Leucine
Magnolol
Mucociliary clearance
Mass median aerodynamic diameter
microparticles
Multistage cascade impactor
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
nano-embedded-in-microparticles
Nanofibers
Nanoparticles
Nonsmall cell lung cancer
The mean optical density of untreated wells
The mean optical density of wells treated with the test sample
Phosphatidic acid
Phosphate buffered saline
Phosphatidylethanolamine
Polyethylene glycol
Phosphatidylglycerol
Phosphatidylglycerol Phosphatidylinositol

DI D	1 1 1 1
PLP	phospholipids
pMDI	Pressurized metered dose inhalers
PS	Particle size
PVA	Polyvinyl alcohol
Rb	Retinoblastoma
RH	Relative humidity
RP	Respirable particle fraction
RT	Respiratory tract
SCLC	Small cell lung cancer
SD	Spray dried
sd	Standard deviation
SD-MP	Spray dried microparticles
SEM	Scanning electron microscopy
ТВНР	Tert-butylhydroperoxide
Temp.	temperature
TFA	Trifluoroacetic acid
TGA	Thermogravimetric analysis
TSI	Twin stage impinger
UV	Ultraviolet
VMD	Volume mean diameter

List of Abbreviations

XRPD	X -ray powder diffraction
θ	Angle of repose
$\lambda_{ ext{max}}$	The wavelength of maximum absorption

List of Equations

No.	Equation	Page
I	$dA(Stokes) \cong dv \sqrt{\frac{\rho}{\chi \rho 0}}$	4
II	$\sigma \cong 15.6 \varphi^4 \frac{W}{d_v}$	4
1	$tan \theta = 2 h/d$	36
2	$CI = 100 \times [(V0 - Vf)/V0]$	37
3	HR = Vo /Vf	37
4	AE % = [Actual Mag amount/Theoretical Mag amount] × 100	38
5	$Span = \frac{Dv(90) - Dv(10)}{Dv(50)}$	39
6	$MMAD = d\sqrt{\frac{ ho}{ ho}}$	39
7	$EF = \frac{(m full - m empty)}{m powder} \times 100$	43
8	$RP\% = (St2/EF) \times 100$	43
9	$EI\% = \sqrt{St2 \times EF}$	43
10	% cell viability = $[1 - (ODt/ODc)] \times 100\%$	45
11	$\eta 1 = \eta 2 \; \frac{t1}{t2}$	131
12	EE % = [Actual Mag amount/Theoretical Mag amount] × 100	133

List of Tables

Table no.	Title	Page no.
I	Characteristics of used phospholipids (PLP).	25
II	Flow properties based on the angle of repose.	37
III	Flow properties based on the compressibility index and Hausner's ratio values.	38
1	Formulation variables used in the preparation of Mag CS/PLP hybrid SD MP.	33
2	Composition of spray dried formulae.	35
3	Characterization of plain SD-CS MPs spray dried at 0.25% feeding concentration.	52
4	Characterization of Mag loaded CS-MPs spray dried at 0.5% feed concentration	53
5	Cumulative percentage release of Mag from CS-SD powders in comparison to the pure drug powder	54
6	Characterization of Mag Loaded EPC-CS hybrid MP prepared under various formulation conditions	57
7	Characterization of Mag loaded CS/EPC-3 hybrid MP.	59
8	Characterization of Mag loaded CS/DSPC hybrid MP.	60
9	Characteristics of Mag loaded CS/DPPG-Na hybrid MP.	61
10	Moisture content of plain and Mag loaded CS/PLP hybrid SDP.	63
11	Volume based particle size laser diffraction data of plain and Mag loaded hybrid SD-MP	64