

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

EXPERIMENTAL STUDIES ON ZOOPLANKTONIC FEEDING OF SOME FISH FRY FROM CERTAIN FRESHWATER PONDS AT ABBASSA, SHARKI A, EGYPT.

THESIS
Submitted to the Faculty of Science Ain Shams University

In Partial fulfillment of the Requirements for the degree of Master of Science in zoology (Aquatic Ecology)

by
Abeer Said Abd-EL Rahman
B. Sc. in Biology

Supervised by

Prof. Dr. Abdalla M. Ibrahim
Head of zoology
Department, Faculty of Science,
Ain Shams University.

Dr. Magdy T. Khalil Assist Prof. of Aquatic Ecology. Zoology Department, Faculty of Science, Ain Shams University.

Dr. Zienab Attia EL-Nagdy Z. EL Lagdy
Assist Prof. of Aquatic Ecology
Central Laboratory for Aquaculture Research (CLAR)

1998

74-V

الم الكلية على القدم الرسالة شادع ١٩١١/١٩٥٠ الرسالة شادع ١٩١١/١٩٥٠ الرسالة شادع ١٩١١/١٩٥٠ الرسالة شادع الدرسة الد

CONTENTS

	Abstract	i
<u>.</u>	Acknøledement	iii
•	List of tables	iv
•	List of figures	v
	CHAPTER I: Introduction CHAPTER II Review of literature	1
	CHAPTER II Review of literature	11
	Feeding of tilapia species	11
	1. Feeding habits	11
	2. Feeding regime	13
	Natural food organisms	15
	Artificial feed	17
	CHAPTERIII: Materials and Methods	, 22
	Natural food	22
	Culture of phytoplankton and zooplankton organisms.	22
	Analytical procedures	26
	1. Water analysis	26
	1.1. Water temperature and dissolved oxygen	26
	1.2. Secchi disk visibility	27
	1.3. pH	27
	1.4. Ammonium (NH ₄) and ammonia (NH ₃)	27
	1.5. Total alkalinity	28

	i p. ma š	
	1.6. Total hardness	28 .
	1.7 Filterable orthophosphate and total phosphorus.	28
	1.8 Nitrite-nitrogen (NO2-N)	28
ŧ	1.9. Nitrate-Nitrogen (NO ₃ -N)	29
•	1.10. Chlorophyll "a"	29
*)	1.11. Phytoplankton	30
r.	1.12. Zooplankton	31
(-	1.13. Artificial feed	33
	2. Chemical analysis of plankton organisms.	33
ĵ::	2.1 Total protein	33
às	2.2. Lipids	34
G?	Experimental designs and rearing of Oreochromis niloticus	1
Qa)	(34
€11	Culture Technique	34
£:	Experiment 1: Effect of food denisities on growth rate of tilapia fry	35
Ú.	Experiment 2: Dietary effect on growth rate of fish fry	. 36
C5		38
1%	Gut analysis	39
••v•	3. Biochemical analysis for fish fry	39
₹:	3.1. Dry matter (DM)	39
22	3.2. Crud Protein (CP)	40
	3.3. Fat	40
<u> 2</u> V	3.4. Ash	40
	Evaluation of feed efficiency	10

		42
	Statistical analysis CHAPTER IV: Results and Discussion	43
>	1. Effect of fertilizers on phytoplankton and chlorophyll "a"	43
		43
	(a) Phytoplankton	44
	(b) Chlorophyll "a"	48
	2. Effect of fertilizer on zooplankton	_
	2. Chamical composition of zooplankton organisms	53
	Experiment I: Effect of food densities on growth of O. niloticus	56
	fry.	54
	1. Water quality	56
	2. Survival percentage of cultured fry	_
	3. Effect of food denisities on growth rate of tilapia fry.	60
		60
	3.1. Growth in length	63
	3.2. Growth in weight	67
	3.3. Condition factor	7C
	4. Dietary effects on fish fry biochemical composition	
	4.1. Protein content	7C
		71
	4.2. Lipid content	71
	4.3. Ash content	72
	4.4. Moisture	of 75
	5. Effect of the zooplankton density diet on performance of)1 /0
	Nile tilapia (O. niloticus) fry	
	5.1. Total weight gain per fish	<i>7</i> 5
	5.1. 10tar wergin 8 1	

5.2. Percent weight gain	76
5.3. Average daily gain in weight	76
5.4. Growth rate	76
5.5. Specific growth rate	77
5.6 Food conversion ratio (FCR)	77
5.7 Protein efficiency ratio (PER)	77
6. Gut contents	85
bo Gut analysis	85
n: Experiment II	94
1. Water quality of culturing aquaria	94
2. Survival percentage	96
3. Yield (g)	97
4. Dietary effect on growth rate of fish fry	100
han 4.1. Growth in length	100
a. 4.2. Growth in weight	105
4.3. Condition factor	105
4.4. Weight gain	107
4.5. Food conversion ratio (FCR)	107
4.6. Protein efficiency ratio (PER)	
$f_{E} = f_{E}$	107
CHAPTER V : Summary & Conclusion	111
CHAPTERVI: References	115
Arabic summary	X
nois:	
पुरो हैजाब :	

ABSTRACT

ass culture of live food organisms and formulation of artificial feed have gained much importance to raise the required stocking material for fish hatcheries and aquaculture. Growing of natural food organisms and their production on commercial scale are still in the experimental stage.

Experimental trials were carried out to feed Nile tilapia (*Oreochromis niloticus*) fry on different densities of natural food (zooplankton) and artificial feed (containing 25% protein). It is concluded from the results that growth response of tilapia fry varied according to the percentage of zooplankton and artificial diet used in the experiments. The highest growth rate was observed in fry groups fed on diet containing the highest number of zooplankton (5500 org./fry).

A positive correlation was found between the number of zooplankton and the gain in weight and food conversion ratio of *O. niloticus* fry. The protein content of the reared fry

increased with the increase of the percentage of zooplankton in the diet.

int

Biochemical analysis of the reared Nile tilapia fry showed that the body protein content increased with increasing protein in the diet. Thus, the fry group which fed on the highest density of zooplankton, has the highest protein content in their flesh. The dietary lipid content did not appear to have a significant effect on body lipid content. Also, the body ash content has not been affected by changing the dietary protein levels.

It is recommended to feed the fry, in fish hatcheries, on zooplankton organisms during their first ten days after hatching, in order to get maximum growth rate and best food conversion and performance.

ACKNOWLEDGMENT

อาวณ์

sad

Praise and thanks be to Allah without whose help, Iwould not have been able to complete this work. I wish to express my deep gratitude and sincere thanks to Prof. Dr. Abdalla M. Ibrahim, Head od Zoology Department, Faculty of Science Ain Shams University, who provided invalube insight and guidance through his supervision of this study. I an also grateful to Dr. Magdy T. Khalil, Assist Prof. of Aquatic Ecology, Zoology Department, Faculty of Science, Ain shams University for close supervision of the work and reviewing the manuscrpit. I'm especially indebted to Dr. Zeinab FNagdi, Assist Prof and Head of Limnology Department, Central Laboratory for Aquaculture Research (CLAR) for sincere supervision, providing all kinds of help for this study.

Lovely greeting are due to my Kin family especially my beloved parents.

Many thanks are due to my Husband Mr. Karem Mohammad for hivery kind help and support during the preparation of this thesis.

Thanks also to staff members of Zoology Department, Faculty of Science, Ain Shams University for the help they offered and staff members of the (CLAR) for their help in various ways and continuous encouragement

.