

Enhanced Route Discovery Mechanism of Ad Hoc on Demand Distance Vector Protocol for MANET

A thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Electronics and Communication Engineering,

By

May Sayed Abd El Hady Nouh

B.Sc. in Electronics and Communications Engineering Higher Technological Institute/10th of Ramadan City

Supervisors Prof. Dr. Salwa Hussein El Ramly

Electronics and Communications Engineering Department
Faculty of Engineering
Ain Shams University

Prof.Dr. Mohamed Zaki Abd El Megied

Computers and Systems Department Faculty of Engineering Al Azhar University

Dr. Hussein Abd El Atty El Sayed

Electronics and Communications Engineering Department
Faculty of Engineering
Ain Shams University

(2017)

Enhanced Route Discovery Mechanism of Ad Hoc on Demand Distance Vector Protocol for MANET

By

May Sayed Abd El Hady Nouh

B.Sc. in Electronics and Communications Engineering Higher Technological Institute/10th of Ramadan City

Approved by:

Signature

Prof. Dr. Mohamed Gamal El Dien Darwish

Prof. of Computer Networks, Faculty of Computer Science-Cairo University.

Prof.Dr. Ismaiel Mohamed Hafez

Prof. of Electronics and Communications, Electronics and Communications Engineering Department, Faculty of Engineering-Ain Shams University.

Prof. Dr. Salwa Hussein El Ramly

Prof. of Electronics and Communications, Electronics and Communications Engineering Department, Faculty of Engineering-Ain Shams University.

Prof.Dr. Mohamed Zaki Abd El Megied

Prof. of Computer Networks, Computers and Systems Department, Faculty of Engineering-Al Azhar University.

STATEMENT

This thesis is submitted as partial fulfillment of the requirements for the degree of Master of Science in Electronics and Communications Engineering, Faculty of Engineering, Ain Shams University.

The Author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Signature

May Sayed Abd El Hady Nouh

Researcher Data

Name: May Sayed Abd El Hady Nouh

Date of birth: 28 October 1987

Place of birth: Cairo – Egypt

Academic Degree: BSc. Degree

Field of specialization: Communication engineering

University issued the degree: Higher Technological Institute

'HTI'

10th- Ramadan City

Date of issued degree: August 2010

Current Job: Teaching Assistant, at HT

List of Contents

Contents	Page
Aknowledgment	III
List of Figures	IV
List of Tables	V
List of Acronyms	VI
Abstract	VIII
Chapter 1	1
Introduction	1
1.1 Background	3
1.2 Problem Statement	5
1.3 Thesis Objectives	6
1.3.1 General Objectives	6
1.3.2 Specific Objectives	6
1.4 Methodology	7
1.5 Organization of the Thesis	7
Chapter 2	9
Mobile Ad hoc Network: Characteristics, Challenges,	
Applications and Protocols	9
2.1 Introduction	9
2.2 MANETs Characteristics.	10
2.3 Advantages of MANET	10
2.4 MANETs Challenges	10
2.5 MANETs Applications	11
2.6 Routing Protocols of MANET.	12
2.7 Categorization of MANET Routing Protocols	13
2.7.1 Proactive Routing Protocols.	14
2.7.1.1 Destination-Sequenced Distance-Vector Routing (DSDV)	15
2.7.2 Reactive Routing Protocols.	15
2.7.2.1 Dynamic Source Routing Protocol (DSR)	16
2.7.2.2 Ad hoc On demand Distance Vector (AODV) Routing	19
Protocol	
2.7.3 Hybrid Routing Protocols	23
2.7.3.1 Zone Routing Protocol (ZRP)	23
2.8 Local Connectivity Management in MANET	24
2.9 Conclusion.	24
Chapter 3	25
Background and Related Works	25

List of Contents

3.1 Background	25
3.2 Related Works and Comparisons	25
3.3 Conclusion	31
Chapter 4	32
Enhanced Route Discovery Mechanism	32
4.1 Introduction	32
4.2 Route Discovery Process	32
4.2.1 Route Request Cycle	33
4.2.2 Route Reply Cycle	34
4.3 Terminology.	35
4.4 AODV with Enhanced Route Discovery Mechanism	36
4.5 Implementation of the Proposed Algorithm	46
4.6 Conclusion.	49
Chapter 5	50
Simulation Environment and Simulation Model	50
5.1 Simulation Environment	50
5.2 Traffic and Mobility Model	50
5.3 Simulation Scenarios	52
5.4 Conclusion.	56
Chapter 6	57
Simulation Results and Discussions	57
6.1 Performance Criteria	57
6.2 Simulation Results and Analysis	58
6.3 Conclusion	71
Chapter 7	73
Conclusion and Future Work	73
7.1 Conclusion	73
7.2 Future Work	74
References	76
Appendix A: TCL Script for Simulation	84
Appendix B: AWK Script to Calculate Metrics from Output Trace File	87

Acknowledgment

First and foremost I am kneeling obsequious to ALLAH thanking HIM for showing me the right way. Without God help, my efforts would have gone astray. It was through the grace of God that I was able to acquire this accomplishment.

I would like to express my deepest gratitude to Prof. Dr. Salwa Hussein El Ramly, my supervisor, for her continues academic support, her nice treatment and patience and for all the fruitful guidance and encouragement, she has given to me throughout the thesis completion. I'm deeply indebted to her for her endless help.

I would like also to express my sincerest gratitude and thanks to my supervisor Prof. Dr. Mohamed Zaki Abd El Megied for his continuous academic support and for his nice treatment and patience. He motivated me along the way by encouraging creative thinking and opening my eyes upon different issues in the field of wireless networks. Also he provided me support for all the details in this thesis which include the algorithm design and simulation analysis.

I wish to extent a special gratitude and thanks to Dr. Hussein Abd El Atty El Sayed for giving me an opportunity to work under his supervision. I'm deeply indebted to him for his enormous guidance and support throughout the work program.

List of Figures

List of Figures	Page
Figure 1.1. Simple Mobile Ad Hoc Network Configurations	1
Figure 2.1. Route Discovery Mechanism of DSR	18
Figure 2.2. RREQ Fields	20
Figure 2.3. RREP Packet Format	20
Figure 2.4. Route Discovery Mechanism of AODV	21
Figure 4.1. Non-Optimal Route Formation	34
Figure 4.2. Generation of Unnecessary RREP Packets	36
Figure 4.3. Flow Chart that Shows Action of Node on Receiving	Ţ,
Rout Request Packet	40
Figure 4.4. Flow Chart That Shows Action of Nodes on Receiving	<u>,</u>
Overhear Rout Reply	41
Figure 4.5. Flow Chart That Shows Action of Nodes on Receiving	<u>,</u>
Rout Reply	41
Figure 4.6. Pseudo Code of the Proposed Algorithm	42-45
Figure 6.1 Packet Delivery Fraction Against Pause Time	59
Figure 6.2 End to End Delay Against Pause Time	60
Figure 6.3 Normalized Overhead Against Pause Time	61
Figure 6.4 Packet Delivery Fraction Against Pause Time	62
Figure 6.5 End to End Delay Against Pause Time	62
Figure 6.6 Normalized Overhead Against Pause Time	63
Figure 6.7 Packet Delivery Fraction Against Node Speed	64
Figure 6.8 End to End Delay Against Node Speed	65
Figure 6.9 Normalized Overhead Against Node Speed	66
Figure 6.10 Packet Delivery Fraction Against Node Speed	66
Figure 6.11 End to End Delay Against Node Speed	. 67
Figure 6.12 Normalized Overhead Against Node Speed	68
Figure 6.13 Varying Source Connection	69
Figure 6.14 Varying Nodes Density	70-71

List of Tables

List of Tables P	age
Table 5.1 Simulation Parameters	52
Table 5.2 Simulation Parameters for Scenario 1	53
Table 5.3 Simulation Parameters for Scenario 2	53
Table 5.4.a Simulation Parameters for Scenario 3	54
Table 5.4.b Simulation Parameters for Scenario 3	54
Table 5.5 Simulation Parameters for Scenario 4	55
Table 5.6 Simulation Parameters for Scenario 5	55
Table 6.1 Performance Comparison of AODV MOD Against AODV	72

List of Acronyms

List of Acronyms:

ACK Acknowledgment

AODV Ad hoc On demand Distance Vector

AODV-SBA AODV with Sufficient Bandwidth Aware Routing

Protocol

AODV_MOD AODV Modified with non-optimal route suppression

CBR Constant Bit Rate

CBRP Cluster Based Routing Protocol

DSDV Destination sequence distance vector

DSR Dynamic source routing

E-to-E delay Average end-to-end delay

EPAOMDV Enhanced Power Based Multipath Protocol

IEEE Institute of Electrical and Electronic Engineer

IETF Internet Engineering Task Force

IP Internet Protocol

LAN Local Area Network

LAR Location Aided Routing

LOS Line of Site

MAC Medium Access Control

MANET Mobile Ad hoc Network

NNRR Nominated Neighbors Rebroadcast RREQ

NRL Normalized Routing Load

NS2 Network Simulator 2

OLSR Optimized Link State Routing Protocol

OTCL Object oriented Tool command language

PDF Packet Delivery Fraction

PH-AODV Power and Hop based AODV

QoS Quality of Service

List of Acronyms

RERR Route Error

RFC Request for comments

RREP Route reply

RREQ Route request

SHARP Sharpe Hybrid Adaptive Routing Protocol

STAR Source tree Adaptive Routing

TCL Tool command language

ZRP Zone routing protocol

Abstract

Resources in "Mobile Ad- hoc Network (MANET)" are scarce; therefore it is very important to reduce number of unimportant transmitted data packets and exchanged control packets among nodes, because each transmitted packet exhausts the battery power and needs processing capability at each node along its path. This could be done by diminishing number of control packets and reducing the number of nodes along the route between the originating and target node that reduce the number of transmissions. The control packets and power consumption of reactive protocols are less than proactive ones since routes are created solely when it is needed. As it being reactive protocol, "Ad hoc on Demand distance Vector (AODV)" still try to minimize the control packets at the expense of increased average end-to-end delay. The reasons for the delay to increase are due to the selection of long paths as a route, collision and congestion during path creation procedure.

This thesis revisits the issue of route discovery in "AODV" routing protocol, and forwards a proposal of an algorithm called Enhanced Route discovery Mechanism that suppresses non-optimal routes by identifying cases at which this non-optimal route is to occur during the route discovery process. The modified AODV with enhanced route discovery is called AODV_MOD. The first reason for the formation of non-optimal route is dropping of lately received Route Request (RREQs) by considering as if it has passed more hops than previously arrived. The algorithm, however, processes all RREQs that are received by nodes regardless of their arrival time and responds based on comparisons of their hop count. Besides, an increase in control overhead due to processing the same RREQ more than once is compensated by suppressing the initiation of Route Reply (RREP) which is unimportant and in addition has some contribution for the formation of non- optimal route

Abstract

even if the RREQ is received for the first time. By using this algorithm, the routing overhead and number of nodes in the source to destination path can be reduced. Ultimately, resulting in the reduction of the average end-to-end delay, number of packet re-transmissions, routing loads and number of data packets drop between the originator and target node. As a result, the performance and efficiency of AODV routing protocol have been improved from point of view of packet delivery fraction, end-to-end delay and normalized routing load.

Chapter (1) Introduction

Chapter 1

Introduction

In the last few years, the scene of wireless mobile networking systems has been revised vastly, and modern wireless mobile communication technologies have been progressed innovatively day after day [1]. Wireless networks are networks which use wireless media for communication between the nodes. It allows flexible communication on which mobile nodes can freely move. One of the momentous evolving wireless mobile networking is an infrastructure-less ad-hoc network [1]. Due to the rapid increase of technology, it became available various devices with mobility capabilities. Hence Mobile Ad- hoc Networks (MANETs) are being used to carry out some important tasks. Wireless mobile ad hoc network is infrastructure-less and dynamically self- organizing network [2]. MANET consists of a group of wireless mobile nodes, where the communication among them via wireless links with hops style, without any centralized management [3], where each node is capable to forward packets of data in routing, therefore it is a multihop communication as shown in Figure 1.1. All the nodes have the same role, where each one of them can operate as a router and a host.

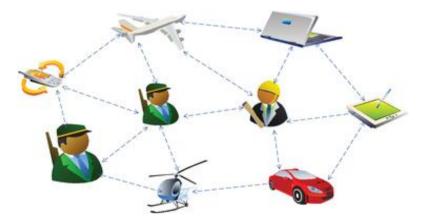


Figure 1.2. Simple Mobile Ad Hoc Network Configuration [4]

Chapter (1) Introduction

MANET has tremendous potential for operating in an on demand style, getting and maintaining routes only when it is needed, i.e. on the fly to start [5]. MANET usage in situation where creating the infrastructure network would be impossible or prohibited by certain reasons [6]. As it is being infrastructure- less, ad hoc network can be used in a certain region and provides firm operation [7]. Example of applications including urgent deliverance in locations of natural catastrophes, teams and for communication in harsh scenarios as battlefields. Even though it has the above important characteristics and applications, there are also challenges that face MANET's such as battery life, buffer space processing capability, security, transmission quality and bandwidth optimization [1]. In addition, problems like maintenance and discovery of routes, where this is due to that the network dynamic topology changes continuously and unpredictably [8].

The mobile nodes in MANET may require a high degree of interaction between them due to their limited capabilities as transmission power [1]. Consequently, in MANET networks, due to nodes mobility, nodes may not be able to communicate with each other directly because they are not in the same area of their transmission range; therefore some intermediate nodes are required for network organization and take care of the data forwarding. Where, nodes can switch from one location to another on a variety of node speed, as a result, the topology of network changes continuously and unpredictably. Only within small interval of time neighboring nodes can lose communication link. Nodes may be willing to enter or leave a MANET at any instant or their battery power have been exhausted at any time especially when the mobility is high [5]. MANET radio transmission range of nodes in wireless networks is optimized, based on their local neighborhood information, to establish desirable network topologies and lower transmission range,