Diagnostic and Prognostic Value of Temporal recording of facial nerve stimulation and Ultrasonography in unilateral facial palsy

Thesis

Submitted for partial fulfillment of M.D. Degree in Physical Medicine, Rheumatology and Rehabilitation

Presented by

Noha Mahmoud Mahmoud Shaker Al Alfi

M.B., B.Ch.,M.Sc Faculty of Medicine, Ain Shams University.

Supervised by

Prof. Nagwa M. M. Nassar

Professor of Physical Medicine, Rheumatology and Rehabilitation. Faculty of Medicine, Ain Shams University.

Prof. Iman Mahmoud Ghanima

Professor of Physical Medicine, Rheumatology and Rehabilitation.

Faculty of Medicine, Ain Shams University.

Assist. Prof. Eman Ahmed Tawfik

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation.
Faculty of Medicine, Ain Shams University.

Faculty of Medicine
Ain Shams University
Cairo
2017

الصدغي للعصب القيمة التشخيصية و التنبؤية لكل من التسجيل □الوجمي و الموجات فوق الصوتية في مرض شلل العصب الوجمي

رسالة

الطب الطبيعي و الروماتيزم و في توطئة للحصول على درجة الدكتوراه التأهيل مقدمة من

□نهى محمود محمود شاكر الألفي/الطبيبة

بكالوريوس الطب و الجراحة ماجستير الطب الطبيعي و الروماتيزم و التاهيل

إشراف تحت

ادرنجوی محمد محمود نصار \Box

أستاذ الطب الطبيعي و الروماتيزم والتأهيل كلية الطب- جامعة عين شمس

أد/ ايمان محمود غنيمه

أستاذ الطب الطبيعي و الروماتيزم والتأهيل كلية الطب- جامعة عين شمس

□د/ ايمان احمد توفيق

أستاذ مساعدالطب الطبيعي و الروماتيزم والتأهيل كلية الطب- جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس جامعة عين شمس

القاهره

7.17

سورة البقرة الآية: ٣٢

I always feel the gratitude to my advisor, professor Nagwa M. M. Nassar for her generous support and patience, not only during this research work, but essentially during my entire career. Her care was really beyond imagination. I have to express appreciation for sharing her pearls of wisdom with me during the course of this research. This study was impossible to see light without her continuous guidance. I am so grateful to her for holding me to a high research standard and enforcing strict validations for each research result, and thus teaching me how to do research.

Special thanks to **Professor Iman Mahmoud Ghanima**. Her extensive experience in the field of electrodiagnosis was pivotal in this work. She enriched our study with invaluable ideas, insightful comments and constructive criticisms at different stages of my research which were thought provoking and helped me focusing my ideas.

I would like to extend my sincere gratitude to Assistant Professor Eman Ahmed Tawfik for her meticulous and countless revisions, detailed instructions, keen advice, careful reading, flawless grammatical editing of my thesis and the generous sharing of her experience in the field of the neuromascular ultrasound.

I can't but express my deepest thanks to all my professors and colleges who provided support that greatly assisted this research. And Finally, I take this opportunity to express the profound gratitude from my deep heart to my beloved family for their love and continuous care.

List of Contents

Subjects	Page
• List of Abbreviations	I
List of Table	II
List of Figures	III
• Introduction	1
Aim of the Work	4
Review of literature:	
Chapter 1: Facial nerve anatomy and lesions	5
Chapter 2: Facial nerve palsy	15
Chapter3: Diagnostic approach and function assessment of facial nerve palsy	
Chapter 4: Novel techniques for assessment of fa	cial
nerve palsy	44
Chapter 5: Management of facial nerve palsy	63
Subjects And MethodsResults	90
 Discussion Conclusion and Recommendations 	
Summary	
• References	150
Arabic Summary	

List of Abbreviations

AAN: American academy of neurology.AFNR: Antidromic facial nerve response.

AIDS : Acquired immune deficiency syndrome.

ANOVA : Analysis of variance. **AUC** : Area under the curve.

BAER: Brain stem auditory evoked response.: Compound muscle action potential.

CNS : Central nervous system.
 CSA : Cross sectional area.
 CT : Computed tomography.
 D/N ratio : Diseased/Normal ratio.
 DNA : Deoxyribonucleic acid.
 EAC : External auditory canal.

EDX : Electrodiagnosis.

ELISA : Enzyme-linked immunosorbent assay.

EMG : Electromyography.

EMG bio : Electromyography biofeedback.

ENoG : Electroneuronography.ES : Electric stimulation.

FNAEP : Facial nerve antidromic evoked potentials.FTA-ABS : Fluorescent treponemal antibody absorption

HB: House Brackmann.

HIV: Human immunodeficiency virus.

HSV : Herpes simplex virus.IAC : Internal acoustic canal.

IM : Intra mascular.

LMNL: Lower motor neuron lesion.

mA : Milli ampere.

MEVs : Minimal excitability values.

MHz : Megahertz.

MNC : Motor nerve conduction.

MRI : Magnetic resonance imaging.

mV : Milli volt.

NCS : Nerve conduction study.

&List of Abbreviations

PCR: Polymerase chain reaction.

PNF: Proprioceptive neuromuscular facilitation.

r : Pearson correlation test.

ROC : Receiver-operating characteristic.

RPR : Rapid plasma reagin.
SDC : Strength duration curve.
SOOF : Suborbicularis oculi fat.

SPSS: Statistical package for social sciences.

SWD : Short wave diathermy.

TDS : To be taken three times daily.UMNL : Upper motor neuron lesion.

US: Ultrasound.

VDRL : Venereal disease research laboratory.

VZV : Varicella zoster virus.WD : Wallerian degeneration.

∠ List of Tables

List of Tables

Tab. No.	Subject	Page
Table(1)	Segmental distribution of facial nerve.	5
Table(2)	Summary of innervations and actions of facial mimetic muscles.	12
Table(3)	Localization of the site of lesion in L.M.N facial paralysis.	14
Table(4)	Causes of facial nerve palsy.	16
Table(5)	The grading system developed by House and Brackmann.	33
Table(6)	Clinical data in patients group.	92
Table(7)	Comparison between the two groups of positive and negative taste affection.	93
Table(8)	Disease severity according to HB grading scale.	94
Table(9)	Patients improvement according to HB grading scale.	95
Table(10)	Amplitude of facial NCS recording from frontalis- nasalis-orbicularis oris muscles in control group.	96
Table(11)	Amplitude of facial NCS of frontalis muscle in the diseased side in patients group.	98
Table(12)	Amplitude of facial NCS of nasalis muscle in the diseased side in patients group.	100
Table(13)	Amplitude of facial NCS of orbicularis oris muscle in the diseased side in patients group.	101
Table(14)	ENoG (% of degeneration) recording from	102

∠List of Tables

	frontalis- nasalis-orbicularis oris muscles in	
	patients group .	
Table(15)	Site of application in facial nerve temporal recording.	105
Table(16)	Latency of facial nerve temporal recording in control group.	106
Table(17)	Amplitude of facial nerve temporal recording in control group.	107
Table(18)	Latency of facial nerve temporal recording in the diseased side of patients group.	108
Table(19)	Latency of facial nerve temporal recording in the normal and diseased side of patients group .	109
Table (20)	Latency of facial nerve temporal recording in control group and diseased side of patients group.	109
Table (21)	Amplitude of facial nerve temporal recording in the diseased side of patients group.	110
Table (22)	Amplitude of facial nerve temporal recording in the normal and diseased side of patients group.	111
Table (23)	Amplitude of facial nerve temporal recording in the control group and diseased side of patients group.	112
Table (24)	Facial nerve diameter in control group.	115
Table (25)	Facial nerve diameter in the diseased side in patients group.	117
Table (26)	Facial nerve diameter in the normal and diseased side in patients group .	118
Table (27)	Facial nerve diameter in the control group and	119

∠List of Tables

	diseased side in patients group.	
Table (28)	Correlation study between amplitude of facial nerve temporal recording and facial nerve diameter on the diseased side.	122
Table (29)	Correlation study between diameter of diseased facial nerve and the HB grading scale.	123
Table (30)	Correlation study between amplitude facial nerve temporal recording and the HB grading scale.	124
Table (31)	Correlation study between amplitude facial nerve conduction study and the HB grading scale.	125
Table (32)	Correlation study between the amplitude of facial nerve temporal recording and the % of degeneration of ENoG.	126
Table (33)	ROC curve between normal and diseased sides of facial nerve diameter.	126
Table (34)	ROC curve between normal and diseased sides of amplitude of facial nerve temporal recording.	127
Table (35)	ROC curve of the percent of degeneration of ENoG	128

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Volitional-emotional dissociation of facial movement.	7
Fig. (2)	Distribution of facial nerve.	8
Fig. (3)	Sites of recording and reference electrodes in FNAEP.	46
Fig. (4)	Wave form of FNAEP.	50
Fig. (5)	Extrinsic and intrinsic auricular muscles.	51
Fig. (6)	Picture of facial nerve by ultrasound.	60
Fig. (7)	Patient with right Bell's palsy.	73
Fig. (8)	ENoG technique.	76
Fig. (9)	Recording method of FNAEP.	80
Fig.(10)	Facial nerve temporal recording in control group.	82
Fig.(11)	Probe position for ultrasound scanning of the longitudinal view of facial nerve.	83
Fig.(12)	Clinical data in patients group.	92
Fig.(13)	Disease severity according to HB grading scale.	94
Fig.(14)	Amplitude of facial NCS recording from frontalis - nasalis - orbicularis oris muscles in control group.	97
Fig.(15)	Amplitude of facial NCS of frontalis muscle in disease side in patients group.	99
Fig.(16)	Amplitude of facial NCS of nasalis muscle in the disease side in patients group.	100

∠List of Figures

Fig. No.	Subject	Page
Fig.(17)	Amplitude of facial NCS of orbicularis oris muscle in the disease side in patients group.	101
Fig.(18)	ENoG (% of degeneration) recording from frontalis - nasalis - orbicularis oris muscles in patients group.	103
Fig. (19)	The normal ENoG response.	103
Fig.(20)	ENoG in a patient with left facial palsy (first, second and third visits).	104
Fig.(21)	site of application if facial nerve temporal recording.	105
Fig.(22)	Latency of facial nerve temporal recording in control group.	106
Fig.(23)	Amplitude of facial nerve temporal recording in control group.	107
Fig.(24)	Latency of facial nerve temporal recording in the diseased side of patients group.	108
Fig.(25)	Amplitude of facial nerve temporal recording in the diseased side of patients group.	111
Fig.(26)	Amplitude of facial nerve temporal recording in the normal and diseased side of patients group.	112
Fig.(27)	Wave form of facial nerve temporal recording in control group recording from EAC.	113
Fig.(28)	Wave form of facial nerve temporal recording in control group recording from the auricle.	113
Fig.(29)	Facial nerve temporal recording in a patient with left Bell's palsy (first, second and third visits).	114

∠List of Figures

Fig. No.	Subject	Page
Fig.(30)	Facial nerve diameter in the control group.	115
Fig.(31)	<u>Ultrasound of left facial nerve in volunteer.</u>	116
Fig.(32)	<u>Ultrasound of right facial nerve in volunteer.</u>	116
Fig.(33)	Facial nerve diameter in the diseased side in patients group.	118
Fig.(34)	Facial nerve diameter in the normal and diseased side in patients group.	119
Fig.(35)	Left facial nerve in left Bell's palsy 1st, 2nd and 3rd visits.	120
Fig.(36)	Right facial nerve in right Bell's palsy 1st, 2nd and 3rd visit.	121
Fig.(37)	ROC curve between normal and disease side of facial nerve diameter.	127
Fig.(38)	ROC curve between normal and disease side of amplitude of facial nerve temporal recording.	128

Abstract

Facial nerve paralysis is the most common cranial neuropathy. Its incidence ranges from 20 to 30 cases per 100.000 people.

Bell's palsy accounts for more than half of all cases of idiopathic facial palsy. The prognosis for Bell's palsy is generally good with 85 to 90% of patients recovering completely within one month. The remaining 15% of the cases progress to complete degeneration and will not usually show signs of recovery for three to six months and may develop complications such as residual paresis, contracture and synkinesis.

Evaluation of the prognosis of Bell's palsy is important for patients counseling and guiding further management. Since 1970's, prognostication has been based mainly on various electrophysiologic tests, such as electromyography (EMG), electroneuronography (ENoG), maximal nerve excitability testing, and facial motor nerve conduction (MNC) testing Abnormal results of these tests are obtained after the degeneration process extends to the extra-temporal segment of the facial nerve with 1 to 2week delay

€Abstract

Key word:

Human immunodeficiency virus, Megahertz, Nerve conduction study, Upper motor neuron lesion, Receiver-operating characteristic.