

Ain Shams University
Faculty of Women for Arts,
Science and Education
Physics Department

Quality Assurance of an Analytical Method for Radioactivity Measurement by HPGe Detector

Thesis submitted for the partial fulfillment of Master Degree in Physics (Nuclear Physics)

BY:

Nermin Ibrahem Mohamed El-Anwar

B. Sc. in Physics, 2005

Supervised by

Prof.Dr. Magda Mohammed Abd El Wahab

Prof. of Nuclear Physics
Physics Department
Faculty of Women for Arts,
Science and Education,
Ain Shams University

Dr. Zeinab Yousef Morsy

Lecturer of Nuclear Physics
Physics Department
Faculty of Women for Arts,
Science and Education,
Ain Shams University

Dr. Walid Abd El Aziz El Mowafi

Lecturer of Radiation Physics Nuclear and Radiological Regulatory Authority

Approval Sheet

Quality Assurance of an Analytical Method for Radioactivity Measurement By HPGe Detector

Name of candidate

Nermin Ibrahem Mohamed El-Anwar

Supervised by

Signature

Prof. Dr. Magda Mohammed Abd El Wahab

Dr. Zeinab Yousef Morsy

Dr. Walid Abd El Aziz El Mowafi

Approval Stamp

Date of Approval

/ / 2013

/ / 2013

Approval of Faculty Council

Approval of University Council

/ / 2013

/ / 2013

Acknowledgement

Infinite thanks are to Allah, the beneficent, the merciful. Who supported me in all the steps of my life and enabled me to complete this work.

I would like to express my thanks and gratitude to **Prof.Dr. Magda Abd ElWahab**, for her kindness, valuable suggestions and guidance leading always towards more perfection and achievement of this work, for her advices, fruitful discussions and continuous hard work throughout this work.

Special, great and deep thanks are to my supervisor **Dr. Zeinab Yousef Morsy** for her support and advice.

I would like to express my thanks and gratitude to **Dr. Walid Abd El-Aziz** for his support, advice and for suggesting the plan of this work.

I would like to express my great thanks to **Prof. Dr. Samia Abdel Malak** professor of nuclear physics at physics department, for her social kindness and care, guidance and continuous encouragement and advices in teaching work and research and in reviewing the manuscript.

I would like to express my deepest gratitude to Prof. Dr. Sanaa Atia Mohamed Prof. Assistant in Radioactive Pollution Environment Unit, Egyptian Atomic Energy Authority (EAEA) for allowing the measurement of samples 7, 17.

I also thank **Prof.Dr Gamal Foad** professor of mathematics at Mathematical department Faculty of Women for Arts, Science and Education. Ain Shams University for her help in mathematical part and **Sohair Khamis** assistant lecturer at Mathematical department, Faculty of Women for Arts, Science and Education. Ain Shams University for her help.

My great thanks to **Prof. Dr. Hayam El-Zahed** the head of the physics department, and to all staff members of the physics department, Faculty of Women for Arts, Science and Education. Ain shams University for their kindness and fruitful cooperation.

My special and unlimited thanks are to my family for their moral support. Also I dedicate this work to the spirit of my father.

Abstract

In this study, the volume efficiency for a hyper pure germanium detector was determined by a modified mathematical method using the absolute efficiency obtained by using a Ra-226 point source (0.1 μ Ci) at different source - detector distances (0.5, 3.5, 5.5, 7.5 and 9.5 cm).

A relative photopeak efficiency curve using a Ra-226 point source was normalized to an absolute volume efficiency curve using potassium chloride (KCl) solution method. In addition the absolute volume efficiency using KCl results were used to convert the absolute Ra-226 point source efficiency curve (0.1 μ Ci) to an absolute volume efficiency curve. Since in the present study the activity concentrations of soil samples has to be estimated, a factor F_1 was proposed to account for the differences in densities of the KCl solution and the soil samples. The results were in agreement with the results of the mentioned KCl method taking in consideration the correction factor.

To validate the results obtained using the mathematical equation, nineteen soil samples were collected from Ras Shukeir in Egypt; with the same volume (100 ml) as KCl solution volume. The activity concentrations (Bq/kg) of U-238, Th-232 and K-40 were determined at d = 0.5 cm (surface contact). The results were compared with those obtained using the KCl method after correction and were in agreement. The

activity concentrations (Bq/kg) of some of these samples were determined at source - detector distances 3.5, 5.5, 7.5 and 9.5 cm, where only the activities at 0.5 cm were in agreement with the KCl method.

A correction factor F_2 for the volume efficiency using the mathematical equation was proposed to account for density of the medium (air) between the sample and detector, and the results were in agreement after the modification to the mathematical equation at different source to detector distances.

The activities of two of the soil samples were also measured in the Environmental Pollution Lab in the Egyptian Atomic Energy Authority (EAEA) using standard calibration sources of U-238 (RGU-1) and Th-232 (RGTh-1). The results were compared with those obtained using the mathematical method and were in agreement and therefore validates it.

The radiation hazard indices were estimated for the 19 soil samples. The values for all the samples were in the permissible levels.

Contents

Title Page	
Acknowledgment	i
Abstract	iii
Contents	V
List of Figures	viii
List of Tables	X
Summary	xi
Chapter 1	
Radioactivity	
Title	Page
1.1 Naturally Occurring Radiation and Radioactivity	1
1.1.1 Natural Radioactive Series	
1.1.2 Artificial Radioactive Series	
1.2 Man – Made Sources of Radiation	
1.3 Radiation Hazards	14
Chapter 2	
Gamma Ray Interactions and Detectors	
2.1 Gamma Radiation	18
2.2 Interaction of Gamma Radiation With Matter	18
2.3 Shielding Materials	24
2.4 Attenuation of Gamma Rays in a Medium	25
2.5 General Characteristics of Photon Detectors	26
2.5.1 Gas – Filled Detectors	30
2.5.2 Scintillation Detectors	31
2.6 Semiconductor Materials	34
2.6.1 Extrinsic and Intrinsic Semiconductors	35
2.6.2 The P-N Junction as a Detector	38

Contents

2.6.3 Silicon and Lithium Drifting	36	
2.6.4 The High Purity Germanium Detectors		
2.6.4.1 Planar Configuration	43	
2.6.4.2 Coaxial Configuration	44	
2.7 Literature Review for Determination of Volume Efficiency	45	
2.8 Literature Review for Determination of Activity Concentrations for Soil Samples	50	
2.9 The Aim of The Present Work	52	
Chapter (3) Experimental Set-Up and Measurements		
3.1 Detection System 3.1.1 High Purity Germanium Detector	54	
3.1.2 Detector Bias Supply	59	
3.1.3 Spectroscopic Amplifier	60	
3.1.4 Multichannel Analyzer (MCA)	61	
3.2 Experimental Work 3.2.1 Energy Calibration and Energy Resolution		
3.2.2 Sample Detector Arrangement	66	
3.3 Detector Efficiency	67	
3.3.1 Efficiency Calibration of HPGe Detector	70	
3.3.2 Efficiency Variations With Source – Detector Geometry	72	
Chapter(4)		
Results And Discussions		
4.1 Results of Efficiency for HPGe Detector Using Ra-226	78	
4.2 Volume Efficiency Using Mathematical Method	83	
4.3 Validation To Mathematical Method	84	
4.3.1 Comparison Between the Activity Concentrations for Soil Samples By Two Methods	88	

Contents

4.4 Radiological Hazard Indices4.4.1 Absorbed and Effective Dose Rate	95
4.4.2 Radium Equivalent	95
4.4.3 External and Internal Hazard Indices	96
Conclusions	97
References	99
Arabic Summary	105

List of Figures

NO.	Caption	Page
(1-1)	Sources and distribution of average radiation	
	exposure to the world population	2
	[http://www.who.int].	
(1-2)	Thorium series	6
	[http://www.thefullwiki.org/Decay_chain].	0
(1-3)	Uranium-238 series	7
	[http://www.thefullwiki.org/Decay_chain].	,
(1-4)	Actinium series. [http://commons.wikimedia.org].	9
(1-5)	Neptunium series	10
	[http://www.thefullwiki.org/Decay_chain].	10
(2-1)	Photoelectric effect.	17
(2-2)	Compton scattering effect.	19
(2-3)	The mechanism of pair production.	20
(2-4)	Thomson scattering process.	21
(2-5)	The various types of radiations and shielding.	22
(2-6)	Gas filled detector [http://www.physics.isu.edu].	27
(2-7)	Scintillation detector [http://www.physics.isu.edu].	30
(2-8)	The band of (a): the insulator, (b): the	21
	semiconductor band and (c): the conductor band.	31
(2-9)	Pure intrinsic silicon and silicon doped with	33
	arsenic.	33
(2-10)	Silicon doped with gallium.	34
(2-11)	The diffused P-N junction.	35
(2-12)	Planar HPGe detectors (p-type).	40
(2-13)	Large volume coaxial HPGe detectors.	41
(3-1)	Cross section of HPGe detector with liquid nitrogen	53
	cryostat [Alfassi, 1994].	
(3-2)	A few of the many mounting configurations for	55
	semiconductor detectors.	
(3-3)	(a) Diagram of the basic radiation detection system	
	(b) The arrangement of the components that were	59
(0)	used in the present measurements.	
(3-4)	Calibration line of HPGe detector.	60

List of Figures

(3-5)	Definition of detector resolution.	61
(3-6)	Spectrum of Co-60.	62
(3-7)	Frequently used measuring geometries (D = detector, Q = source).	63
(3-8)	Full energy peak efficiency calibration curve for a germanium semiconductor detector.	65
(3-9)	γ -ray spectrum of Ra-226 point source at d = 0.5 cm.	68
(3-10)	Schematic drawing of a measuring geometry with an extended source.	70
(4-1)	Absolute efficiencies vs. energies at different distances (a) 0.5 (b) 3.5 (c) 5.5 (d) 7.5 (e) 9.5cm and (f) all these distances.	80
(4-2)	The absolute efficiency vs. distance for the Ra-226 gamma transitions.	82
(4-3)	Relative photo peak efficiency using (Ra-226) point source (unknown activity).	86
(4-4)	The absolute volume efficiency normalized by KCl (100 ml).	87
(4-5)	Absolute volume efficiency curves using KCl solution for Ra-226 point source (0.1 µCi) & one with an unknown activity.	88
(4-6)	Absolute volume efficiency from KCl method & mathematical equation at d= 0.5 cm.	88
(4-7)	The activity concentrations (Bq/kg) for (a): U-238, (b): Th-232, (c): K-40.	91

List of Tables

NO.	Caption	Page
(1-1)	Some basic information for primordial nuclides.	4
(1-2)	The properties of some primordial radionuclides.	5
(3-1)	Energies and intensities of the emitted gamma rays from Ra-226 point source.	71
(4-1)	Absolute efficiencies versus energy at different distances using Ra-226 point source $(0.1 \ \mu Ci)$.	79
(4-2)	The fitting parameters for all gamma energies.	81
(4-3)	The volume efficiencies for different gamma transitions at all distances.	83
(4-4)	The relative efficiency for HPGe detector by Ra-226 point source.	85
(4-5)	Absolute efficiency for volume 100 ml by KCl method.	86
(4-6)	The correction factor for each soil sample.	87
(4-7)	Specific activities for soil samples at 0.5 cm.	90
(4-8)	Specific activities for soil samples at different distances without factor.	92
(4-9)	The correction factor (F_2) for each distance.	93
(4-10)	Specific activities for soil samples at different distances.	94
(4-11)	Activities for sample 7 and 17 is measured in Environmental Pollution Lab. Egyptian Atomic Energy Authority	95
(4-12)	Hazard Parameters (D, E_{eff} , Ra_{eq} , H_{ex} and H_{in}).	96

Summary

Gamma-ray spectrometry is one of the most widely used procedures to determine the concentrations of natural and artificial radionuclides in environmental samples. The efficiency of HPGe detector is essentially required to determine the radioactivity of unknown nuclides, and it is also important as a fundamental characteristic of a detector. The thesis contains four chapters.

Chapter 1

This chapter contains an introduction about the natural radiation and radioactivity.

The following items are also discussed: man – made sources of radiation like nuclear weapons tests, nuclear accidents, and radiation hazard indices.

Chapter 2

Chapter 2 gives a background about the gamma ray detectors, and discusses the following:

- Interaction of gamma radiation with matter.
- Shielding materials.
- Attenuation of gamma rays in a medium.
- Different types of gamma ray detectors.
- Semiconductor materials.
- The different types of semiconductor detectors.

- Literature review for the determination of volume efficiency.
- Literature review for the determination of activity concentrations for soil samples.
- The aim of the present work.

Chapter 3

This chapter describes the general components of the HPGe spectrometer and explains the present experimental work:

- Determination of volume efficiency for HPGe detector by two methods, the first is a mathematical method using a standard Ra-226 point source. The experimental method is KCl method using two sources of Ra-226.
- Determining of the activity concentrations of U-238, Th-232 and K-40 for 19 soil samples using the two methods to compare and validate the results of the mathematical method.
- Measurement of activity concentrations of two of the standard soil samples in EAEA using U-238 (RGU-1) and Th-232 (RGTh-1) standard sources to validate the mathematical method.

Chapter 4

Chapter 4 consists of the results and discussions of measuring the volume efficiency for the used hyper pure germanium detector by mathematical method and KCl method.

• The absolute efficiency curve obtained by a Ra-226 standard source was converted to an absolute volume efficiency curve