EFFECT OF CHITOSAN AND CALCIUM NANO-PARTICLES ON QUALITY AND STORABILITY OF STRAWBERRY FRUITS

By

SAFAA ZAKARIA MAHMOUD MOHAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams Univ. (2008) M.Sc. Agric. Sc. (Botany), Ain Shams Univ. (2011)

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

EFFECT OF CHITOSAN AND CALCIUM NANO-PARTICLES ON QUALITY AND STORABILITY OF STRAWBERRY FRUITS

BY

SAFAA ZAKARIA MAHMOUD MOHAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2008M.Sc. Agric. Sc. (Botany), Ain Shams University, 2011

Under the supervision of:

Dr. Mohamed Emam Ragab

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Ahmed Abou El-Yazied Abd El-Hafiez

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abd EL-Fatah Rajeh

Senior Researcher of Vegetable Handling, Horticulture Research Institute, Agricultural Research Center

ABSTRACT

Safaa Zakaria Mahmoud Mohamed: Effect of Chitosan and Calcium Nanoparticles on Quality and Storability of Strawberry Fruits. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2017.

Two field experiments were carried out during the two successive winter seasons of 2014-2015 and 2015-2016 at sandy loam soil in a private farm located at Tokh district, Qalubia Governorate, Egypt, and the storage rooms of Handling of Vegetable Crops Dept., Hort., Res. Institute, ARC, Giza, to study the effect of spraying chitosan and calcium nanoparticles on preserving the quality parameters and storability of the strawberry festival cultivar. The preparation and characterization of chitosan and calcium nanoparticles were carried out in Nanotechnology and Advanced Material Central Lab., Agriculture Research Central, Giza, Egypt. The first experiment was designed to study the effect of foliar application of nano-chitosan (0, 125, 250 or 500 ppm) and bulk chitosan 500 ppm on fruit quality and storability for 20 days of storage at 0°C plus 2 days shelf life at 10°C. The second experiment was designed to study the effect of foliar application of nano-calcium (0, 15, 30, 60 or 120 ppm), bulk calcium (120 ppm) and EDTA calcium (500, 750 or 1000 ppm) on fruit quality and storability at the same conditions. The experimental design was complete randomized block design for the field experiments but the lab experiments were complete randomized design with three replicates. Data were recorded on fruit quality (fruit length, diameter, weight, firmness, dry matter percentage, TSS, TA, anthocyanin, vitamin C and total sugar content) and storability (weight loss, fruit decay, general appearance, firmness, color, anthocyanin, vitamin C, TSS, TA and total sugar content).

Results indicated that fruit harvested from plants, which were sprayed with nano-chitosan at 125 ppm in the first experiment or nano-calcium at 15 ppm in the second experiment had significantly positive

effect on fruit quality, also gave the lowest values of weight loss, decay percentage, maintained fruit firmness and L-ascorbic acid, also decreased color development through the storage period plus shelf life. Furthermore, they also gave fruits with a good appearance without any decay till 20 days at 0 °C plus shelf life 2 days at 10 °C (shelf life). The study recommended that Strawberry fruits obtained from plants sprayed with nano-chitosan at 125 ppm or nano-calcium at 15 ppm are very important to improve quality and storability of strawberries.

Key Words: Strawberry, nanoparticles, nanotechnology, foliar spray, chitosan, calcium, shelf life, quality, storability.

ACKNOWLEDGEMENT

First of all, great thanks and gratitude be to **ALLAH**, who guide me to this way and assist me in all life. All words, all feelings, and all praise will not be enough to thank **ALLAH**. I owe my deepest gratitude to my family, **my mother**, **my father**, and **my brothers** for their moral support, which made this work comes to reality.

My high recognition and specific appreciation are also dedicated to **Prof. Dr. Mohamed Emam Ragab**, who was a great help to me in achieving this work by his continuous advice and fruitful guidance and tangible contribution. All words and feelings are not enough to express how grateful, I am to him.

I'm deeply grateful to the valuable assistance of *Prof. Dr. Ahmed Abou El-Yazied Abd El-Hafiez*, who kindly devoted a great deal of his valuable time to this work. Due to his supervision guidance, encouragement, valuable suggestions and endless advice, this work has been brought to light and existence.

Thanks are expressed also to *Dr. Mohamed Abdel Fattah Rajeh*, Senior Researcher, Vegetable Handling Research, Horticultural Research Institute, Agriculture Research Center for his help.

I'm also pleased to mention my sincere thanks and high regards for *Dr. Taher Ahmed Salaleldin*, Associate Prof. of Nanotechnology, and Director of Mostafa Elsayed Nanotechnology Research Centre, British University in Egypt, for his close supervision, continuous help and encouragement throughout the practical part of nanotechnology.

I am greatly honored to express my deep gratitude and faithfulness to *Prof. Dr. Said zakaria Abd El-Rahman*, for his advice, valuable suggestion, useful comment, continued help, and reviewing this study.

Finally, I would like to state clearly my great appreciation and respect to all the staff members of the Horticulture Dept., Fac. of Agric., Ain Shams Univ., and Vegetable Handling Research Department, Horticulture Research Institute. Also, special thanks to staff members of Nanotechnology and Advanced Material Central Lab., Agriculture Research Centre for their kind support help in materials characterization.

CONTENTS

LIST OF TABLES	Page V
LISTOF FIGURES	v XII
LIST OF ABBREVIATIONS.	XIII
1. INTRODUCTION.	7111
2. REVIEW OF LITERATURE	
2.1. Definition of nanotechnology	4
	4
2.2. Application of nanotechnology in agriculture field	4
2.2.1. Benefits of nanotechnology on fruit quality	5
2.2.1.1. Effect of nanoparticle-coated on fruit quality	6
2.2.1.2. Effect of nano-fertilizers on fruit quality	7
2.3. Effect of foliar application of chitosan nanoparticles and bulk	
chitosan on quality and storability of strawberry fruits	8
2.3.1. Effect of nano-chitosan and bulk chitosan on quality of	
fruits	8
2.3.1.1. Physical characteristics.	8
2.3.1.2. Chemical characteristics	9
2.3.2. Effect of nano-chitosan and bulk chitosan on storability of	
fruits.	9
2.3.2.1. Physical characteristics	10
a) Weight loss percentage	10
b) Decay percentage	14
c) General appearance score	17
d) Fruit firmness	19
e) Color	20
2.3.2.2. Chemical characteristics	22
a) Anthocyanins concentration	22
b) L-ascorbic acid concentration	23
c) Total soluble solids percentage	24
d) Total titratable acidity percentage	26
2.4. Effect of foliar application of calcium nanoparticles and	
chelated calcium on quality and storability of strawberry fruits	27

2.4.1. Effect of nano-fertilizer and calcium on quality of fruits	
2.4.1.1. Physical characteristics	
2.4.1.2. Chemical characteristics	
2.4.1.2.1. Calcium concentration in fruits	
2.4.2. Effect of nano-fertilizer and bulk-calcium on storability	of
strawberry fruits	
2.4.2.1. Physical characteristics	
a) Weight loss percentage	
b) Decay percentage	
c) General appearance score	
d) Firmness	
e) Color	
2.4.2.2. Chemical characteristics	
a) Anthocyanin concentration	
b) L-ascorbic acid concentration	
c) Total soluble solids percentage	
3. MATERIALS AND METHODS	•••
3.1. Filed experiments:-	
3.1.1. First experiment: Effect of foliar application of chitosa	an
nanoparticles and bulk chitosan on quality and storabili	ty
of strawberry fruits	
3.1.1.1. Preparation protocol of chitosan nanoparticles	
modification	
3.1.2. Second experiment: Effect of foliar application wi	th
calcium nanoparticles and chelated calcium on quality ar	nd
storability of strawberry fruits	
3.1.2.1. Preparation protocol of calcium nanoparticles	
3.1.3. Fruit quality	
3.1.3.1. Physical properties	
3.1.3.2. Chemical properties	.
3.2. Storage experiments	
3.2.1. Physical measurements	. •
3.2.2. Chemical analysis	
3.3. Laboratory measurements for identification of nano-sca	le
calcium and chitosan particles	•••
3.3.1 High resolution transmission electron microscope (HI	R -

	TEM)	50
	3.3.2 X-Ray diffraction (XRD)	51
	3.3.3. Zeta sizer	52
	3.3.4. The scanning electron microscope in experiment	
	chitosan nanoparticles at surface fruits (SEM)	53
3.4. S	tatistical analysis	53
	ULTS AND DISCUSSION	54
4.1. C	Characterization of synthesized chitosan nanoparticles	54
	.1.1. Transmission electron microscopy (TEM)	54
	.1.2. Particle size distribution and zeta potential measurement of	
	CSNPs	54
4	.1.3. Scanning electron microscopy (SEM)	56
	Characterization of synthesized calcium nanoparticles	57
	.2.1. Transmission electron microscopy (TEM)	57
	.2.2. X-Ray diffraction (XRD)	58
	irst experiment: Effect of foliar application with chitosan	
n	anoparticles and bulk chitosan on quality and storability of	
Si	trawberry fruits	59
	Fruits quality parameters	59
	4.3.1.1. Physical properties	59
	4.3.1.2. Chemical properties	61
4.3.2.	Fruits storability	61
	4.3.2.1. Weight loss percentage	61
	4.3.2.2. Decay percentage	65
	4.3.2.3. General appearance score	68
	4.3.2.4. Fruits firmness	73
	4.3.2.5. Color	77
	4.3.2.6. Anthocyanins concentrations	84
	4.3.2.7. L-ascorbic acid concentrations.	87
	4.3.2.8. Total soluble solids percentage	91
	4.3.2.9. Titratable acidity percentage	94
	4.3.2.10. Total sugars concentration	97
4.4.	Second experiment: Effect of foliar application with	
	calcium nanoparticles and chelated calcium on quality and	
	storability of strawberry fruits	100
	4.4.1. Fruits quality parameters	100

4.4.1.1. Physical properties	100
4.4.1.2. Chemical properties	102
4.4.1.2.1. Calcium concentration in fruits	104
4.4.2. Fruits storability	105
4.4.2.1. Weight loss percentage	105
4.4.2.2. Decay percentage	108
4.4.2.3. General appearance score	111
4.4.2.4. Fruits firmness	116
4.4.2.5. Color	119
4.4.2.6. Anthocyanins concentrations	127
4.4.2.7. L-ascorbic acid concentration	130
4.4.2.8. Total soluble solids percentage	133
4.4.2.9. Titratable acidity percentage	136
4.4.2.10. Total sugars concentration	139
5. SUMMARY AND CONCLUSION	143
6. REFERENCES	150
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
(1):	Physical and chemical analyses of the soil of experimental	
	site.	45
(2):	Effect of foliar application with chitosan nanoparticles on	
	physical properties of strawberry fruits during 2014/2015 &	
	2015/2016 seasons.	60
(3):	Effect of foliar application with chitosan nanoparticles on	
	chemical properties of strawberry fruits during 2014/2015	
	& 2015/2016 seasons	60
(4):	Effect of foliar application with chitosan nanoparticles on	
	weight loss percentage of strawberry fruits stored at 0 °C	
	and RH 95% during 2014/2015 and 2015/2016 seasons	62
(5):	Effect of foliar application with chitosan nanoparticles on	
	weight loss percentage of strawberry fruits stored at 0 ${\rm ^{o}C}$	
	and RH 95% plus 2 days at 10 $^{\circ}\text{C}$ and RH 85% (shelf life)	
	during 2014/2015 and 2015/2016 seasons	63
(6):	Effect of foliar application with chitosan nanoparticles on	
	decay percentage of strawberry fruits stored at 0 °C and RH	
	95% during 2014/2015 and 2015/2016 seasons	66
(7):	Effect of foliar application with chitosan nanoparticles on	
	decay percentage of strawberry fruits stored at 0 °C and RH	
	95% plus 2 days at 10 °C and RH 85% (shelf life) during	
	2014/2015 and 2015/2016 seasons	67
(8):	Effect of foliar application with chitosan nanoparticles on	
	general appearance of strawberry fruits stored at 0 °C and	
	RH 95% during 2014/2015 and 2015/2016 seasons	70
(9):	Effect of foliar application with chitosan nanoparticles on	
	general appearance of strawberry fruits stored at 0 $^{\circ}\text{C}$ and	
	RH 95% plus 2 days at 10 °C and RH 85% (shelf life)	
	during 2014/2015 and 2015/2016 seasons	71

Table No.		Page
(10):	Effect of foliar application with chitosan nanoparticles on	
	firmness of strawberry fruits stored at 0 °C and RH 95%	
	during 2014/2015 and 2015/2016 seasons	74
(11):	Effect of foliar application with chitosan nanoparticles on	
	firmness of strawberry fruits stored at 0 °C and RH 95%	
	plus 2 days at 10 °C and RH 85% (shelf life) during	
	2014/2015 and 2015/2016 seasons	75
(12):	Effect of foliar application with chitosan nanoparticles on	
	lightness value of strawberry fruits stored at 0 °C and RH	
	95% during 2014/2015 and 2015/2016 seasons	78
(13):	Effect of foliar application with chitosan nanoparticles on	
	lightness value of strawberry fruits stored at 0 °C and RH	
	95% plus 2 days at 10 °C and RH 85% (shelf life) during	
	2014/2015 and 2015/2016 seasons	79
(14):	Effect of foliar application with chitosan nanoparticles on	
	hue angle value of strawberry fruits stored at 0 °C and RH	
	95% during 2014/2015 and 2015/2016 seasons	80
(15):	Effect of foliar application with chitosan nanoparticles on	
	hue angle value of strawberry fruits stored at 0 °C fruits	
	stored at 0°C and RH 95% plus 2 days at 10 °C and RH	
	85% (shelf life) during 2014/2015 and 2015/2016 seasons	81
(16):	Effect of foliar application with chitosan nanoparticles on	
	chroma value of strawberry fruits stored at 0 °C and RH	
	95% during 2014/2015 and 2015/2016 seasons	82
(17):	Effect of foliar application with chitosan nanoparticles on	
	chroma value of strawberry fruits stored at 0 °C and RH	
	95% plus 2 days at 10 °C and RH 85% (shelf life) during	
	2014/2015 and 2015/2016 seasons	83
(18):	Effect of foliar application with chitosan nanoparticles on	
	anthocyanins concentration of strawberry fruits stored at 0	
	°C and RH 95% during 2014/2015 and 2015/2016 seasons	85

Table No.		Page
(19):	Effect of foliar application with chitosan nanoparticles on	
	anthocyanins concentration of strawberry of strawberry	
	fruits stored at 0 °C and RH 95% plus 2 days at 10 °C and	
	RH 85% (shelf life) during 2014/2015 and 2015/2016	
	seasons.	86
(20):	Effect of foliar application with chitosan nanoparticles on	
	L-ascorbic acid concentration of strawberry fruits stored at	
	0 °C and RH 95% during 2014/2015 and 2015/2016	
	seasons.	89
(21):	Effect of foliar application with chitosan nanoparticles on	
	L-ascorbic acid concentration of strawberry fruits stored at	
	0 °C and RH 95% plus 2 days at 10 °C and RH 85% (shelf	
	life) during 2014/2015 and 2015/2016 seasons	90
(22):	Effect of foliar application with chitosan nanoparticles on	
	total soluble solids of strawberry fruits stored at 0 $^{\rm o}{\rm C}$ and	
	RH 95% during 2014/2015 and 2015/2016 seasons	92
(23):	Effect of foliar application with chitosan nanoparticles on	
	total soluble solids of strawberry fruits stored at 0 $^{\rm o}{\rm C}$ and	
	RH 95% plus 2 days at 10 °C and RH 85% (shelf life)	
	during 2014/2015 and 2015/2016 seasons	93
(24):	Effect of foliar application with chitosan nanoparticles on	
	titratable acidity of strawberry fruits stored at 0 $^{\rm o}{\rm C}$ and RH	
	95% during 2014/2015 and 2015/2016 seasons	95
(25):	Effect of foliar application with chitosan nanoparticles	
	titratable acidity of strawberry fruits stored at 0 $^{\circ}\text{C}$ and RH	
	95% plus 2 days at 10 °C and RH 85% (shelf life) during	
	2014/2015 and 2015/2016 seasons	96
(26):	Effect of foliar application with chitosan nanoparticles on	
	total sugars concentration of strawberry fruits stored at 0 $^{\rm o}{\rm C}$	
	and RH 95% during 2014/2015 and 2015/2016 seasons	98
(27):	Effect of foliar application with chitosan nanoparticles total	