Current Status of Brucella Infections In A Major Referral Fever Hospital In Egypt

Thesis

Submitted in Partial Fulfillment for the M.D Degree in Tropical Medicine

By Mahmoud Ashour Mahmoud Abd Elall

M.B.,B.Ch-D.T.M-D.P-Ms.T.M.

Supervisors

Prof. Dr. Mohamed Azab

Prof. Dr. Raied Hamed Mansour

Prof. of Tropical Medicine, Chairman Department of Tropical Medicine Faculty of Medicine Al-Azhar University Prof. of Tropical Medicine Faculty of Medicine Al-Azhar University

Prof. Dr. Essam Abdel-Moneaem El-Moslhy

Department of Community Medicine Faculty of Medicine Al-Azhar University

Prof. Dr. Samy Zaky El-Sayed

Prof. Dr. Aly Mahmoud Bersy

Prof. of Tropical Medicine Faculty of Medicine Damietta Al-Azhar University Prof. of Clinical Pathology Department Faculty of Medicine Damietta Al-Azhar University

Faculty of Medicine Al-Azhar University 2013

بِشِهُ اللَّهُ اللَّاللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ال

وقُل اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ ورَسُولُهُ وَلُولُهُ وَلُولُهُ وَلُولُهُ وَلُولُهُ وَلُولُهُ وَلُولُ

()

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

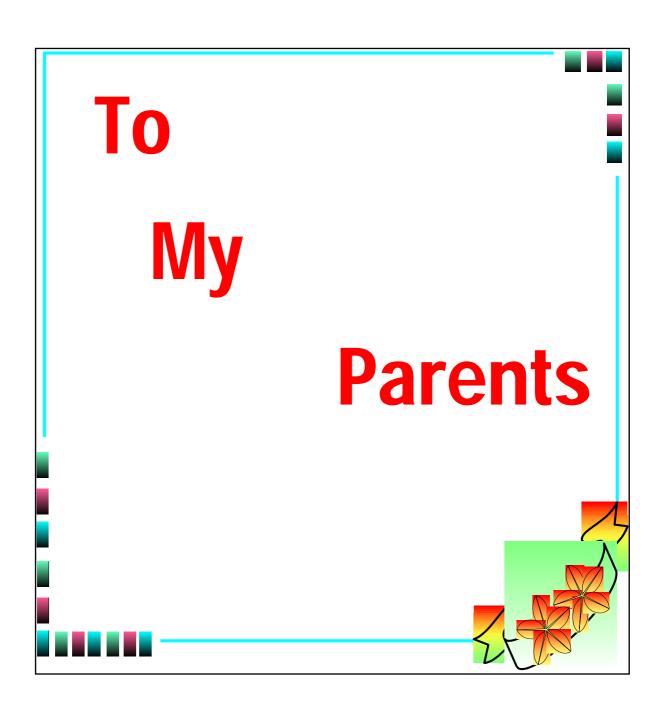
I wish to Express may deep gratitude to **Prof. Dr. Mohamed Azab**, Professor of Tropical Medicine, Chairman Department of Tropical Medicine, Faculty of Medicine, Al-Azhar University for his kind help in supervising griding, and supporting me though the whole work.

I am greatly honored to express my utmost thanks to **Prof. Dr. Raied Hamed Mansour**, Professor of Tropical Medicine, Faculty of Medicine, Al-Azhar University from whom I received faithful supervision, valuable suggestions and continuous guidance throughout the work.

I would like also to express special thanks and appreciation to **Prof. Dr. Samy Zaky El-Sayed**, Professor of Tropical Medicine, Faculty of Medicine, Damietta Al-Azhar University, for his constructive suggestions, valuable comments, revision, constant support and understanding, and helping me with great offort, time and knowledge.

I would like to express my sincere gratitude to **Prof. Dr. Essam Abdel-Moneaem El-Moslhy**, Faculty of Community Medicine, Al-Azhar University, for his supervision, great support and encouragement

Also, my deep thanks to **Prof. Dr. Aly Mahmoud Bersy**, professor of Clinical Pathology Department, Faculty of Medicine, Damietta Al-Azhar University, for his generous time and kind suppervisors during the practical work.


Dreat thanks for **Pr.Dr.Mahmoud Hussien** Pro. And chairman of clinical pathology AL-AZHAR university for his great effort in Elisa investigations IgM, IgG for this study. Many deep thank's for **Dr. Said Ahmed Farouk** lectur of tropical medicine AL-AZHAR university for his great effort in review this work.

I would like to **Dr. Amal Saad**, Specialist and head of virology laboratory of Imbaba hospital for her great offort during the practical work.

It is pleasure to express my greatfull thanks to the staff member of Tropical Medicine, El-Azhar University and to the staff members of Imbaba fever Hopital for their kind help in the practical part of this work.

First I would like to thank God for blessing this work until it has reached its end and to express my thanks and gratitude to my family for their endless support.

List of Contents

	Page
Acknowledgment	
List of Abbreviations	
List of Tables	
List of Figures	
Introduction and Aim of The Work	1
Review of Literature	4
Definition	4
History	4
Epidemiology	6
Microbiology	6
Transmission	6
Biological Terrorism	13
Pathology and pathogenesis	14
Clinical picture	17
Organ Systems of involvement (complications)	24
Diagnosis	30
Prevention	37
Treatment	38
Patients and Methods	43
Results	54
Discussion	108
Conclusion	118
Recommendation	121
Summary	123
References	126
Arabic summary	-

LIST OF ABBREVIATIONS

1st H First hour

2nd H Second hour

ACU Area under the ROC curve

ALP Alkaline phosphatase

ALT Alamine aminotransferase

AST Aspartate aminotransferase.

Br +ve Brudzinski's sign.

CBC Complot blood count.

CDC centre for disease control and prevention.

CI Confidence interval

CNS Central nervous system

ELISA Enzyme linked immunized assay.

ESR Erysosedmendion rate

gm Gram.

Hb Hemoglobin

IFH Imbaba fever hospital.

IM Intra muscular.

IV Intravenous.

Kr +ve Kerning's sign.

L.N. Lymph nod

NAD non abnormality detected

NS P value > 0.05 Non-Significant.

OD Optical density

PO Orally.

RBC Red blood cell

S* P value < 0.05 significant

S** P value < 0.001 high significant

SAT Standard agglutation test

LIST OF ABBREVIATIONS (Cont.)

S.bil Serum billubin

SD Serum dextrues

±SD Standard division.

S.L.E. Systemic lupus erythematosis.

TMP-SMX Trimethoprim -sulfamethoxazole.

WBCs White blood cells

WHO World health organization.

(Ellen, 2010)

List of Tables

Table	Title	Page
1 R	Genus brucella	8
2 R	Global incidence of human brucellosis	10
3 R	Subtypes And Hosts Of Brucella Species	18
4 R	History and symptoms in 500 patients with B. melitensis infection who attended.	22
5 R	Signs in 500 patients with B. melitensis infection who attended.	23
6 R	Recommended therapies for human brucellosis	40
7 R	Drug combinations used to treat brucellosis	41

List of Tables

Table	Title	Page
1	Distribution of studied population	54
2	Comparison between cases & controls regarding sex distribution	55
3	Comparison between cases & controls regarding age distribution	56
4	Comparison between cases & controls regarding residence distribution	58
5	Distribution of cases regarding different governorates	59
6	Seasonal and Monthly presentation of cases	60
7	Comparison between cases & controls as regard Occupation	63
8	Comparison between cases & controls regarding Risk factors	65
9	Comparison between cases & control as regard Patients history.	66
10	Comparison between cases & controls regarding Symptoms	67
11	Fever characteristics among Brucella cases	70
12	Fever characteristics among Brucella cases	70
13	Characteristics of sweating among Brucella cases	71
14	Comparison between cases & controls regarding Signs	72
15	Comparison between cases & controls regarding CBC findings	74
16	Comparison between cases & controls regarding HB level.	75

Table	Title	Page
17	Comparison between cases & controls regarding Leucocytic count	76
18	Comparison between cases & controls regarding ESR	77
19	Comparison between cases & controls regarding ESR	77
20	Comparison between cases & controls regarding Liver functions	78
21	Description of Ultrasound findings among Brucella cases	80
22	Comparison between cases & controls as regard SAT titer	82
23	Predictive ability of SAT to discriminate Brucella cases using ROC curve analysis	84
24	SAT in relation to Urban/ Rural residence among studied population	85
25	Predictive ability of SAT to discriminate rural from urban Brucella cases using ROC curve analysis	86
26	Blood culture among Brucella cases	88
27	Blood culture at different SAT levels among studied population	89
28	Blood culture in relation to Urban/ Rural residence among studied population	91
29	IgM results among studied population	93
30	IgM in relation to Urban/ Rural residence among studied population	95
31	Ig M at different SAT levels among studied population .	97
32	IgG amongBrucella cases	98
33	IgG at different SAT levels among studied population	100

Table	Title	Page
34	IgG in relation to Urban/ Rural residence among studied population	102
35	Line of treatment among Brucella cases	104
36	Follow up of cases among Brucella cases	106
37	Relapse among Brucella cases	107

List of Figures

Fig.	Title	Page
1	Distribution of studied population	55
2	Sex distribution among cases & controls	56
3	Age distribution among cases & controls	57
4	Distribution of studied population into Rural/ Urban	58
5	Distribution of cases regarding different governorates	59
6	Seasonal presentation of cases	61
7	Monthly presentation of cases	62
8	Distribution of Occupations among cases	64
9	Comparison between cases & controls regarding Risk factors	65
10	Distribution of symptoms among cases	69
11	Fever pattern among Brucella cases	70
12	Anaemia distribution in both cases & controls	75
13	Distribution of Leucocytic count in cases& controls	76
14	Distribution of liver functions in cases & controls	79
15	Liver Ultrasound results among Brucella cases	81
16	Spleen Ultrasound results among Brucella cases	81
17	SAT distribution in both cases & controls	83
18	Receiver Operating Characteristics (ROC) curve showing the predictive ability of SAT to discriminate Brucella cases	84
19	SAT in relation to Urban/ Rural residence among studied population	86

Fig.	Title	Page
20	Receiver Operating Characteristics (ROC) curve showing the predictive ability of SAT to discriminate rural Brucella cases	87
21	Blood culture results among Brucella cases	88
22	Blood culture at different SAT levels among studied population	90
23	Blood culture results in relation to residence among studied population	92
24	Ig M results among studied population	94
25	IgM in relation to Urban/ Rural residence among studied population	96
26	IgM at different SAT levels among studied population	98
27	Ig G results among Brucella cases	99
28	IgG at different SAT levels among studied population	101
29	IgG in relation to Urban/ Rural residence among studied population	103
30	Line of treatment among Brucella cases	105
31	Relapse among Brucella cases	107

INTRODUCTION

Human brucellosis disease remans the world's most bacterial zoonosis, with over half a million new cases annually and prevalence rates in some countries exceeding ten cases per 100 000 population; Despite being endemic in many developing countries, brucellosis remains underdiagnosed and underreported. (Franco et al., 2007).

Wassif et al. (1992) from Egypt, reported that thought brucellosis is wide spread through the world, yes its prevalence is difficult to assess. The reported cases may grossly underestimate the real prevalence of infection. It has been stated that for each reported case, 26 other cases are either unrecognized or unreported. Two peaks were reported during the period from 1982 to 1991, one to 1986-1987 (51 cases reported for each year) and another higher peak at 1990-1991 (91 and 233 cases reported respectively).

Brucellosis is a contagious disease of animals (Zoonosis) that is transmitted from animal to man, the genus Brucella consisted of six named species (Young, 2008). Brucella is a systemic infection caused by intracellular bacteria of the genus Brucella which is transmitted from animal to man (zoonosis). Brucella species are traditionally classified according to their preferred animal host, and four species, each comprising several biovars ,are recognized in humans: B. Melitensis (goats, sheep, and camel), B.abortus (cattel), B. Suis (Pigs) and B. Canis (dogs). The organisms may survive in unpasteurized white soft goat cheese for up to 8 weeks and die within 60-90 days in cheese that has undergone lactic acid fermentation. Freezing dairy products or meat dose not destroy the organisms but they are killed by pasteurization and boiling. The organisms are shed in animal urine, stool and products of conception, and remain viable in soil for 40 days or more (Madkour, 2009).

Introduction and Aim of The Work

This febrile illness is often difficult to diagnose, but seldom fatal. The disease is found worldwide, being most common in the Mediterranean region, Arab Gulf basin, Indian subcontinent, Mexico, and Central and South America. In the United States, brucellosis is most frequently reported in the south and southwest. As a con sequence of a rigorous farm animal screening and vaccination program, and pasteurization of all dairy products, the over all incidence of brucellosis in the United States is low, 0.05 per 100.000 population, with most cases being contracted by travelers who visit endemic areas (Southwick, 2008).

The diagnosis of brucellosis should be considered in an individual with otherwise unexplained chronic fever and nonspecific complaints. Such patients should be questioned for possible sources of exposure to brucella including contact with animal tissues or ingestion of unpasteurized milk or cheese; Both cultures and serologic tests are used to establish the diagnosis of brucellosis. Ideally, the diagnosis of brucellosis is made by isolation of the organism from cultures of blood (Ariza et al., 1995).

Human brucellosis mainly caused by Br. Melitensis, is prevalent on the southern and eastern edges of the Mediterranean basin, particularly in Tunisia, Libya, Egypt, Israel, Lebanon, Saudi Arabia, Iraq, and Kuwait. It remains a significant health and economic burden in these countries (Robert, 1996).

Brucellosis is a febrile illness is often difficult to diagnose, but seldom fatal (Frederick, 2008).