

SIMULATION OF SEDIMENT TRANSPORT IN HIGH ASWAN DAM LAKE

By

Rajaa Mohammed Sabri

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
IRRIGATION AND HYDRAULICS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

SIMULATION OF SEDIMENT TRANSPORT IN HIGH ASWAN DAM LAKE

By Rajaa Mohammed Sabri

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
IRRIGATION AND HYDRAULICS ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed S. El-Manadely Dr. Mohamed H. El-Gamal

Professor of Hydraulics
Head of the Irrigation and Hydraulics
Department
Faculty of Engineering, Cairo University

Associate Professor Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

SIMULATION OF SEDIMENT TRANSPORT IN HIGH ASWAN DAM LAKE

By Rajaa Mohammed Sabri

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
IRRIGATION AND HYDRAULICS ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mohamed A. Soliman, External Examiner

Prof. Dr. M. Mokhles Abou-Seida, Internal Examiner

Prof. Dr. Mohamed S. El-Manadely, Thesis Main Advisor

Engineer's Name: Rajaa Mohammed Sabri

Date of Birth: 28/ 6/1976

Nationality: Iraqi

E-mail: Rajaa_7672@yahoo.com

Phone: 01117588233
Address: Baghdad- Iraq
Registration Date: 01/10/2011
Awarding Date: / /2014

Degree: Master of Science

Department: Irrigation and Hydraulic Engineering

Supervisors:

Prof. Dr. Mohamed S. El- Manadely

Dr. Mohamed H. El- Gamal

Examiners:

Prof. Dr. Mohamed A. Soliman (External examiner)
Prof. Dr. M. Mokhles Abou- Seida, Irrigation and
Hydraulics Department Faculty of Engineering,

Cairo University) (Internal examiner)

Prof. Dr. Mohamed S. El- Manadely, Head of the Irrigation and Hydraulics Department Faculty of Engineering, Cairo University (Thesis main advisor)

Title of Thesis:

SIMULATION OF SEDIMENT TRANSPORT IN HIGH ASWAN DAM LAKE

Key Words:

Sediment Transport, High Aswan Dam Lake, GSTARS3, Scenarios, Numerical Model

Summary:

High Aswan Dam is the most important construction on the Nile River for water storage and control. The dam experiences sedimentation problem upstream the lake. The rate of reservoir sedimentation depends mainly on the size of a reservoir relative to the amount of sediment flowing into it. Through this study, a number of scenarios has been tested to numerically study the expected morphological changes that might take place in HADL as a result of the possible reduction of the incoming flow and/or the sediment loads due to any possible dam construction activities upstream. The mathematical model was first verified to represent the conditions of the lake second; the model was evaluated then applied to the developed scenarios to predict the sediment transport in the longitudinal direction and sedimentation zone extension along the lake and to estimate of the expected total sediment volume.

Insert photo here

Acknowledgments

I would like to express my gratitude to Prof. Dr. Mohamed S. El Manadely who supported my M.Sc. study and provided me with valuable suggestions and guidance to improve my understanding of sediment transport theories and engineering. His advices not only improved my academic development but also guided me to become a better engineer. It is a great honor for me to be his student.

I also wish to express my gratitude to Dr. Mohammed H. El-Gamal for his advices and guidance to complete my course work and dissertation.

I am grateful to Eng. Mokhtar Ali Morad- Head Engineer- Nile protection and development sector- Ministry of Water Resources and Irrigation for providing me software facilities that were used to perform this study.

I wish to express my appreciation to my uncle chief Eng. Mohammed Karam Al Sayyad who encouraged me during my studies. I am grateful to my parents for their support and encouragement of my M.Sc. studies.

Dedication

To My Father's Soul,

Mother,

My Husband

and Lovely Kids

Table of Contents

ACKN	NOWLEDGMENTS
	CATION
TABL	E OF CONTENTS
LIST (OF TABLES
LIST (OF FIGURES
NOMI	ENCLATURE
ABST	RACT
CHAI	PTER 1: INTRODUCTION
1.1.	GENERAL BACKGROUND
1.2.	GENERAL DESCRIPTION OF HIGH ASWAN DAM LAKE
1.3.	SEDIMENTATION IN THE HADL
1.4.	PROBLEM DEFINITION
1.5.	OBJECTIVES
1.6.	THESIS OUTLINES
CHAI	PTER 2: LITERATURE REVIEW
2.1.	GENERAL MODEL IN LAKES.
2.2.	REVIEW OF THE STUDIES RELATED TO THE HADL
CHAI	PTER 3: AVAILABLE DATA
3.1.	INTRODUCTION
3.2.	THE CROSS SECTIONS
3.3.	FLUCTUATION IN WATER LEVEL AT HAD.
3.4.	OUTFLOW DISCHARGE
3.5.	INFLOW DISCHARGES TO THE LAKE
3.6.	HYDROGRAPH AND SEDIMENT INFLOW DATA
3.7.	GRAIN SIZE DISTRIBUTION OF BED SAMPLES
3.8.	WATER TEMPERATURE DATA
	PTER 4: NUMERICAL MODEL CALIBRATION AND VERIFICATION
4.1.	THE NUMERICAL MODEL.
	.Introduction
	Purpose and Capabilities
	Hydraulic Computation of GSTARS3
	Reservoir Routing
	SEDIMENT ROUTING AND CHANNEL ADJUSTMENT OF GSTARS3
4.2.1	
4.2.2	1 1
4.2.3	
4.3.	MATHEMATICAL MODEL CALIBRATION
4.3.1	
4.3.2	
	.2.1. Equilibrium Sediment Transport
	2.2. Recovery Factor
	2.3. Model Sensitivity for Time Step
	2.4. Optimization Methods
1.0	

4.3.2. Mathematical Model Verification	67
4.3.2.1 . Flow Model Verification Phase	67
4.3.2.2. Morphology Model Verification Phase	68
CHAPTER 5: RESULTS AND DISCUSSION	71
5.1. INTRODUCTION	71
5.2. SCENARIOS ANALYSIS	72
	72
5.3.1. Scenarios 1 (base run)	72
5.3.2. Scenarios 2	74
5.3.3. Scenarios 3	76
5.3.4. Scenarios 4	79
CHAPTER 6: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	83
6.1. SUMMARY	83
6.2. CONCLUSIONS	84
6.3. RECOMMENDATIONS	87
REFERENCES	88

List of Tables

Table 2.1: Summary of Selected Research Activities Done on the HADL	20
Table 3.1: Distance of Fixed Cross Sections Upstream HAD	22
Table 3.2: Discharges at Dongola and Inflow to the Lake in Period (1964-2010)	30
Table 3.3: Median Diameter (D ₅₀) of Measured Bed Material Samples in Micron	31
Table 3.4: Percentage of Sand, Silt, and Clay in Bed Material (October 81)	32
Table 4.1: Sediment Transport Equations used for GSTARS3	42
Table 4.2: Combination of Recovery Factor	56
Table 4.3: Comparison between Thalweg Bed Elevation Modeled and Measured for	
Cross Sections in (1/3/1990)	57
Table 4.4: Comparison between Thalweg Bed Elevation Calculated and Measured	
for Cross Sections in (20/12/1994)	69
Table 5.1: Total Sediment Volume, the Average Annual Sedimentation Volume and	
Years to Fill Dead Storage (Scenario 3)	77
Table 5.2: Total Sediment Volume, the Average Annual Sedimentation Volume and	
Years to Fill Dead Storage (Scenario 4)	79
Table 5.3: Comparison between the Scenarios Results	81

List of Figures

Figure 1.1: Basic Types of Deposition
Figure 1.2: Location of High Aswan Dam and its Reservoir
Figure 1.3: HADL and its Main Khors in both East and West Banks
Figure 3.1: Map Showing the Location of Cross Sections Upstream HAD
Figure 3.2: Annual Fluctuation of Water Level in HADL between 1970-2010
(Max. and Min. Water Level) / Year
Figure 3.3: The Mean 10-days of Water Level just Upstream HAD (1995)
Figure 3.4: The relation between Water Level U/S HAD and the Water Volume
of the Lake
Figure 3.5: Outflow and Inflow Discharges for the Period (1986-1994)
Figure 3.6: Monthly Average of Outflow Discharge at HAD (1995)
Figure 3.7: Inflow Discharges at Dongola Station for Different Years
Figure 3.8: Monthly Temperature in HADL
Figure 4.1: Schematic Representation Illustrating the Use of Stream Tube
Concept
Figure 4.2: Definition of variables
Figure 4.3: Representation of a Hydrograph by a Series of Steps with Constant
Discharge and Finite Duration
Figure 4.4: Delineation of Volumes to Build the Capacity Table Used to
Determine <i>Hres</i>
Figure 4.5: Definition of Variables for a Cross Section
Figure 4.6: Provides Ratio between Non-equilibrium Concentration and Carrying
Capacity as a Function of Sediment Particle Size
Figure 4.7: Variation of non-equilibrium effects as a function of distance between cross sections for aggradation (a) and for erosion (b)
Figure 4.8: Simplified flow chart of GSTARS3 model
Figure 4.9: Spatial Variation of (<i>d50</i>) along the Sedimentation Zone U/S HAD
Figure 4.10: Adopted Spatial Variation of Manning's <i>n</i> Values for this study
Figure 4.11: Longitudinal Water Surface Profile throughout HADL (After Calibration Dec. 1985)
Figure 4.12: Comparison between Actual and Calculated Capacities for HADL
Figure 4.13: Temporal Variation of Longitudinal bed Profile while Adopting
Equilibrium sediment Equation Assumption
Figure 4.14: Relationship between recovery factor and (a) shear velocity, (b)
sediment fall velocity, and (c) ω_s / U^*
Figure 4.15: The Predicted Longitudinal Bed Profile after the Calibration while
Assuming Non-Equilibrium Sediment Condition and Measure
Figure 4.16-a: Comparison of Longitudinal Profiles in HADL using Different
time Steps ($\Delta t = 10$, and 30 days)

Figure 4.16-b: Zoom in for Upstream Lake by using different time steps ($\Delta t = 10$
and 30 days)
Figure 4.17: Cross Sec. 19 (466 km u/s HAD) Year 1990
Figure 4.18: Cross Sec. 16 (448 km u/s HAD) Year 1990
Figure 4.19: Cross Sec. 13(431 km u/s HAD) Year 1990
Figure 4.20: Cross Sec. 8 (403 km u/s HAD) Year 1990
Figure 4.21: Cross Sec. 6 (394 km U/S HAD) Year 1990
Figure 4.22: Cross Sec. D (372 km u/s HAD) Year 1990
Figure 4.23: Comparison of Longitudinal Profiles with / without Minimization
Option
Figure 4.24: Comparison of Cross Sec. 13 (431 km U/S HAD) Year 1990 by
Using Minimization and without
Figure 4.25: Comparison of Cross Sec. 8 (403 km U/S HAD) Year 1990 by
Using Minimization and without.
Figure 4.26: Longitudinal Water Surface Profile throughout HADL (after
Verification Dec. 1994)
Figure 4.27: Comparison between Actual and Calculated Capacities for HAD
Figure 4.28: Comparison of longitudinal profiles for Verification Phase (Dec.
1994)
Figure 5.1: Predicted Thalweg Line at 2050 (as per Scenario 1)
Figure 5.2: Example of Monthly Average Inflow Discharges to HADL
(Year 1998)
Figure 5.3-a: Predicted Thalweg Line at 2050 (as per Scenario2)
Figure 5.3-b: Zoom in for Upstream Lake reach (as per Scenario2)
Figure 5.4-a: Predicted Thalweg Line at 2050 (as per Scenario3)
Figure 5.4-b: Zoom in for Upstream Lake Reach (as per Scenario 3)
Figure 5.5: Predicted Thalweg Line at 2050 (as per Scenario 4)

Nomenclature

A Cross section area

 A_d Ineffective cross sectional area

As Volume of sediment in suspension at the cross section per unit length

 A_k Surface area of the reservoir represented by cross section k

ARV Annual runoff coefficient amsl Above mean sea level

B Channel width
BCM Billion cubic meters

 C_{ai} Concentration at a reference level

Ci Concentration of sediment in transportation at cross section i

c Number of particles per unit bed area at time

 C_t Total sediment concentration

 $C_{t,i}$ Sediment transport capacity at cross section i

 C_{ν} Suspended sediment concentration by volume, including wash load

d Sediment particle diameter d_{50} Mean bed material size d_{50} Primary grain diameter

 E_n Artificial damping coefficient g Gravitational acceleration

G Specific gravity of sediments in water

H Elevation of the energy line above the datum

HAD High Aswan Dam
HADL High Aswan Dam Lake
h Water surface elevation
i Cross section index

j Time index

K Total number of size fractions

k Size fraction index M_i Mass of particle

MinF Minimizing sedimentation

MAR Mean annual runoff

MAP Mean annual precipitation

n Manning's roughness coefficient

N Number of size fraction

Q Water discharge

Q_i Time weighted discharges*Q_s* Volumetric sediment discharge

 $Q_{s,i}$ Sediment transport rate at cross section i

 $Q_{s, i, k}$ Computed volumetric sediment discharge for size k at cross section i

q Discharge of flow per unit width

 q_{lat} Lateral inflow per unit length of channel q_{bi} Bed load transport rate for size fraction i

P Wetted parameter

 p_i Percentage of material of size fraction i available in bed P_i^* Percentage of material of size fraction i incoming to the reach

ppm Part per million
Rh Hydraulic radius r_T Turbulent diffusivity $R_{j,t}$ Reservoir release ROC Runoff coefficient S Specific gravity

 S_e Slope of the energy line

 $S_{i,t}$ The largest storage level for the terminal storage state

Sy Sediment yield

STD Soil type and drainage

t Time

 u_i Velocity of particle of class i u_s Sediment transport velocity

*u** Shear velocity

 u_e^* Effective shear velocity

 u_{c50}^* Non dimensional critical shear velocity for the d_{50} fraction

V Flow velocity

VC Vegetation condition

x Length along the flow direction

y Water depth z Bed elevation τ_j Particle strength Recovery factor

 α_{d} Recovery factor for deposition

 α_k Recovery factor of sediment size group k

 α_s Recovery factor for scour γ_s Specific weights of sediment

 γ_m Specific weights of sediment-laden flow

 Δt Time step interval

 Δx Distance between cross sections

 Δx_i Distance between cross section i and i+1

 Δz Change in bed elevation (positive for aggradation, negative for scour)

 ε and ζ Coefficients for the determination of recovery factor

 η Volume of sediment in a unit bed layer volume (one minus porosity) Volume of sediment in a unit bed layer for size k at cross section i

κ Coefficient for the determination of Manning's *n*

V Kinematic viscosity of clear water

 v_m Kinematic viscosity in a sediment-laden flow a, b, and c Weighting factors that must satisfy a + b + c = 1

ρ Fluid density

 ρ_g Sediment grain density

 ρ_s Specific density of sediment particles ρ_m Specific density of sediment particles

Φ	Total rate of energy dissipation
Φ_w	Rate of energy dissipation due to water movement
Φ_s	Rate of energy dissipation due to sediment movement
ω	Sediment particle fall velocities in clear water
ωk	Fall velocity of sediment size <i>k</i>
ωi	Fall velocity of sediment particles I with diameter d_i
ω_m	Particle fall velocity in a sediment-laden flow

Abstract

The major and significant morphological changes of any river might be due to the construction of a huge structure across it like the High Aswan Dam (HAD) on the Nile River (NR). At a level of 182m amsl, the High Aswan Dam Lake (HADL) extends 500 km upstream dam location. HADL has a surface area of nearly 6500 km² and a capacity of 162 billion m³.

The objectives of this study:

To simulate the water and sediment transport in HADL using a numerical model and to test the effect of reducing water flow or/and sediment loads on the morphology of the lake bed.

The study presented in this work was undertaken using historical and field data measurements that were utilized in the numerical model (GSTARS3). The one – dimensional, GSTARS3 model was selected because of its capability in carrying out long term hydrodynamics and sediment transport simulations throughout the entire HADL in a semi-two dimensional manner while adopting the stream tube concept.

The model was calibrated and validated using Han's (1980) non-equilibrium sediment transport equation and Ashida and Michiue formula (1972). Generally the model fitted well measurements however; it predicted more deposition than the measured at the lake entrance. The model was used also to simulate a number of probable future scenarios; such scenarios include: repeating the last 40 years records, reducing the flow discharge in flood seasons by 10% and decreasing sediment loads entering the lake by (10, 25, 50 and 75%), decreasing discharge by (10%) in flood seasons and sediment loads by (10, 25, 50%) respectively.

The model results showed that: repetition of the last 40 years flow rates and sediment loads will result in a general increase in sediment deposition at lake entrance and the upstream sedimentation zone will be extended closer to the dam site up to a distance of 105km from the HAD location.

For the case of 10% reduction in flow discharge in flood seasons, it is noted that the deposition of sediment decreased from lake entrance till 394 km from the dam location.

Decreasing sediment loads entering the lake will decrease the depths of deposition at the lake entrance till km122 from the dam. It was notable that decreasing the entering sediment load by 75% will lead to the lowest deposition depths. Decreasing both flow and sediment loads with different ratios (10, 25 and 50%) will cause some erosion zones to appear/emerge in the upstream reach of the lake and deposition depths will reduce till 402 km upstream the dam.