INSERTION OF CHITINASE GENE TO ATTENUATE EARLY BLIGHT DISEASE IN SOME POTATO VIRUS RESISTANT LINES

By

SALLY MOHAMED HASSAN

B.Sc. Agric. Sci. (Genetic), Fac. Agric., Ain Shams Univ. 2008

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

MASTER OFSCIENCES

in

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

INSERTION OF CHITINASE GENE TO ATTENUATE EARLY BLIGHT DISEASE IN SOME POTATO VIRUS RESISTANT LINES

By

SALLY MOHAMED HASSAN

B.Sc. Agric. Sci. (Genetic), Fac. Agric., Ain Shams Univ. 2008

This thesis for M. Sc. degree has been approved by:

Dr. Abdel-Hady Ibrahim Hasan
Prof. Emeritus of Genetics, Faculty of Agriculture, Al Azhar University.

Dr. Ahmed Fahmy Hussein
Prof. of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. AimanHanafy Abdel-Azeem
Prof. of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abdel-SalamRashed
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.

Date of Examination: / /2017

INSERTION OF CHITINASE GENE TO ATTENUATE EARLY BLIGHT DISEASE IN SOME POTATO VIRUS RESISTANT LINES

$\mathbf{B}\mathbf{y}$

SALLY MOHAMED HASSAN

B.Sc. Agric. Sci. (Genetic), Fac. Agric., Ain Shams Univ. 2008

Under the Supervision of:

Dr. Mohamed Abdel - SalamRashed

Professor Emeritus of Genetic, Department of Genetic, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. AimanHanafy Abdel-Azeem

Professor of Genetic, Department of Genetic, Faculty of Agriculture, Ain Shams University.

Dr. EmadAnisMetry

Head research of Genetic, Agriculture Genetic Engineering Research Institute, Agriculture Research Center.

ABSTRACT

Sally Mohamed Hassan. Insertion of Chitinase Gene to Attenuate Early Blight Disease in some Potato Virus Resistant Lines. Unpublished M.Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2017.

Potato (Solanum tuberosum L.) an agro-economically important food crop in the world, is sensitive to many fungal pathogens including Alternaria solani, the causal agent of early blight disease. Chitinase is cell wall degrading enzyme which has been shown to have high antifungal activity against a wide range of phytopathogenic fungi. In the present study, plasmid pRI 201-AN binary vector, containing the kanamycine selectable marker in plant and the chitinase gene was used in potato transformation. Leaves of Desriee cultivar, PVY5 and PVY15 lines were transformed with the pRI 201-AN construct via the Agrobacterium tumefaciens delivery system. Transformed leaves were incubated for 5 days in dark on callus induction media which contained MS with 5 mg/l 2-4, D, 1 mg/l cefatoxine (200mg/ml) and 1 mg/l kanamycine (25mg/ml). After that callus was transferred to regeneration media which contained MS with 1 mg/l IAA, 1 mg/l BA, 10 mg/l GA3, 1 mg/l cefatoxine (200mg/ml) and 250 µg/l kanamycine (25mg/ml) and their expression at the transcriptional level was confirmed by polymerase chain reaction (PCR) by using chitinase and vector primers. After the transformed plants were evaluated, the positive transgenic plants were detected by using forward and reverse primer of kanamycine.

Keywords: Chitinase; Potato; *Alternaria solani*; early blight disease; *Agrobacterium tumefaciens*.

ACKNOWLEDGEMENT

In the beginning of this thesis, all praise and thanks to Allah as I complete my studies of this thesis.

I would like to extend thanks to everyone, in many ways, who so generously contributed to the work presented in my present thesis.

As a coronation for my researches in the context of my thesis that is accomplished in the Department of Genetics, Faculty of Agriculture, Ain Shams University, which I am proud to belong to. It is a great honor to be a person in this department.

The accomplishment of this thesis is a result of the help and direction from my supervisor **Prof. Mohamed Abdel Salam** who is always working hardly to give me the willing to solve the confusions and direct me approach to the final result of the thesis. On top of that, without his encouragement, I would not finish this final work in my master study. Thank you very much.

Special mention goes to my enthusiastic supervisor, **Prof. Aiman Hanafy**. Really my master has been an amazing experience by working with him and I thank him wholeheartedly, not only for his tremendous academic support, but also for his always encouragement to me.

It is also a matter of pride and honor to have AGERI is the operations lab and research headquarters related of this thesis. I am very proud of my affiliation to the institute.

Furthermore, I would like to show my grateful feeling to **Prof. Emad Anis** who taught me and was the most near for me of my project supervisors in my long way. He is a discipline-keeping person, with whose supervision I accomplish my master study in time. Although He is always nervous and tough in dealing with me but also for giving me so many wonderful opportunities motivating me in terms of administration and rules. Thank you very much.

I am also hugely appreciative to **Dr. Ahmed Mohamed** professor of genetics in AGERI especially for sharing their laboratory expertise.

Great thanks for my colleagues **Mervat Ragab** and **Heba Sayed**, they supported me as a real sisters and good teachers. My warm greetings for those team mates who were my main supporter in my lab.

Finally, but by no means least, thanks go to my great mom, marvelous husband, lovely sisters, my son Yassin and also my dad.

Thanks for almost unbelievable support. They are the most important people in my world and I dedicate this thesis to them.

CONTENTS

	Page
LIST OF TABELS	
LIST OF FIGURS	
1.INTRODUCTION	1
2.REVIEW OF LITERATURE	3
1-Potato	3
2-Abiotic and biotic stresses	3
3- Early blight	4
a-Foliar symptoms of early blight disease	4
b-Early blight disease cycle	5
c-Control of early blight in potato	7
4-Alternaria solani	8
5-Potato virus Y (PVY)	9
6-Chitin	12
7-Chitinase	13
8-Pathogenesis-related (PR) proteins	13
9-Transformation	14
10-Tissue culture and regeneration	16
3.MATERIALS AND METHODS	19
A-Materials	19
1-Plant material	19
2-Agrobacterium tumefaciens	19
3-Escherichia coli	20
4-Plasmid	20
5-Supplements	22
5-1-Kanamycine and cefotaxine	22
5-2-Restriction Enzymes	22
6-Bacteriological media	22
6-1-Luria-Bertani (LB)	22
6-2-LB Agar medium	22
7-Plant media	22
7-1-Callus induction media	22

7-2-Regeneration media	23
8- DNA extraction and detection solutions	23
8-1-Ethidium bromide	23
8-2-50X TAE buffer	23
8-3-Gel-loading buffer (for agarose)	23
9-DNA extraction kit	24
B-METHODS	24
Gene cloning	24
1-Design primers of CHI gene, pRI vector and	24
kanamycine gene	
2-Polymerase chain reaction (PCR)	26
3-Agarose gel preparation	26
4-Purification of PCR product	27
5-Cloning of chitinase (CHI) PCR fragments	27
into pRI 201-AN vector	
5-1-DNA digestion	27
5-1-a-Digestion by SalI enzyme	27
5-1-b-Ethanol precipitation	27
5-1-c- Digestion by NdeI enzyme	28
5-2-Ligation reaction	28
6-Transformation into E. coli competent cells	28
7-Detection the positive colonies by PCR	29
analysis	
8-Isolating Miniprep Plasmid DNA	29
9-Nucleotide and amino acid sequence analysis	30
10-Transformation into Agrobacterium	30
tumefaciens	
11-PCR analysis for detection of transformed	31
colonies	
12-In vitromicropropagation of potato (Solanum	31
tuberosum L.)	

13-Transformation of potato leaves by	32
Agrobacterium tumefaciens using pRI	
201- AN Plasmid	
13-1- Transformation of potato leaves	32
13-2-Callus induction	32
13-3-Regeneration from callus	32
14- Detection of transgenic potato plants	33
4.RESULTS AND DISCUSSION	34
1- Cloning of chitinase (CHI) gene	34
2- Transformation in <i>E.coli</i>	35
3-Confirmation of potential positive colonies	36
4-Nucleotide sequencing	37
5-Transformation of CHI gene into Agrobacterium	41
6- Confirmation of positive colonies (1&2)	42
7- Transformation of potato leaves (Solanum	43
tuberosum L)	
8- Callus induction and regeneration from callus	43
9-PCR detection for transformed Desriee plants	48
10- Detection by using kanamycin primers for	49
Desriee cultivar	
11 PCR detection for CHI gene in PVY5 and	50
PVY15 lines	
SUMMARY	53
REFERENCES	56
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page	
1	Result of ELISA test and resistance level for PVY lines	19	
2	Oligonucleotide sequence of specific primers to CHI gene, pRI vector and kanamycine as selectable marker.		25
3	The percentage of callus induction an regeneration to cultivar Desriee and PVY5, PVY15 lines.	d	48

LIST OF FIGURES

No.	Title	Page
1	pRI 201 binary vector, containing the kanamycine selectable marker in plant.	21
2	Amplification of CHI gene with restriction enzyme sites of NdeI and SalI enzymes.	35
3	Screening of transformed colonies after transformation by <i>E.coli</i> .	36
4	Confirmation of potential positive colonies by different combination of primers.	37
5	The nucleotide sequence and the predicted amino acid sequence of chitinase (CHI) gene with reverse primer.	39
6	Sequences producing significant alignments.	40
7	Dendogram showing phylogenetic tree from the alignment of nucleotide sequence analysis of CHI gene.	41
8	Screening of transformed colonies after transformation by <i>Agrobacterium</i> .	42
9	Confirmation of potential positive colonies by different combination of primers.	43
10	The effect of callus induction media on Desriee cultivar (a), PVY 5 (b) and PVY 15 (c) lines.	45
11	a, b, c, d, e and f steps of regeneration and elongation of Desriee cultivar.	45
12	a, b,c and d steps of regeneration and elongation of	46

13	a, b, c and d steps of regeneration and elongation of PVY15.	46
14	Screening of transgenic plants of Desriee cultivar by using CHI primers and expected size was 798 bp	47
15	Detection of transgenic plants by using kanamycine primer and expected size was 650bp.	48
16	Evaluation of transgenic plants of PVY 5 and PVY15 expected size was 798 bp.	51
17	Confirmation of transgenic plants of PVY 5 and PVY15 expected size was 1761 bp.	52

INTRODUCTION

Potato (*Solanum tuberosum*) is the fourth most important food crop in the world and is a critical crop in terms of food security. During the growing season and under storage conditions potato usually suffers from several fungal and viral diseases that cause serious damage and losses in yield. Such as leaf diseases, wilts, diseases of young plants, tuber diseases, virus and fungal diseases (Jalli *et al.*, 2011).

Some of the fungal diseases are early blight caused by *Alternaria solani* and late blight caused by *Phytophthora infestant*, some of the virus diseases are Potato leafroll virus (PLRV), Potato virus X (PVX) and Potato virus Y (PVY).

Alternaria solani is a fungal pathogen, that produces a disease in tomato and potato plants called early blight; it is also one of the most important foliar pathogens of potato. Yield loss estimates attributed to foliar damage, which results in decreased tuber quality and yield reduction, can reach 20-30% (Olanya et al., 2009).

In storage, *Alternaria solani* can cause dry rot of tubers and may also reduce storage periode, which diminish the quantity and quality of marketable tubers.

The cell walls of bacteria, fungi, mushrooms, the exoskeleton of crustaceans (crabs, shrimp, etc.) and insects, the microfilarial sheath of parasitic nematodes, and the lining of the digestive tracts of many insects have chitin compound (**Araujo** *et al.*, **1993**).

Chitin is used for protection of chitin-containing organisms against the harsh conditions in their environment and host antiparasite/pathogen immune responses. Thus, the absence of chitin can lead to the death of the pathogen (Lee, 2009).

Chitinases contribute to the life cycle of chitin-containing fungi and parasites, in which they control growth and molting. Chitinases are also used by pathogens to invade or exploit chitin-containing structures in the host and thus play a critical role(s) in the transmission of infection from one vertebrate host to another by insect vectors (**Shahabuddin and Kaslow**, **1994**).

The chitinases are the key degrading enzymes; they are produced in significant quantities by hosts as a defense against infection with chitin-containing organisms. This attempt to damage the chitin coat of the infecting organism is part of the innate immune response.

The major goal of this thesis is producing resistant shoots to early blight disease by transforming the chitinase gene into two different lines of potato resistant to virus Y (PVY5 and PVY15) and potato cultivar (Desiree). The object of this study has been carried out through the following steps:

- 1- Genetic transformation using Agrobacterium tumefaciens.
- 2- Regeneration of Desiree cultivar, PVY5 and PVY15 lines.
- 3- Determination of potative transformed shoots using PCR.

REVIEW OF LITERATURE

1- Potato

Potato (*Solanum tuberosum*) is the fourth most important food crop in the world, it contains vitamins and minerals, as well as an assortment of phytochemicals, such as carotenoids and natural phenols (**Ferretti, 2011**) and the predominant form of this carbohydrate is starch.

The total world potato production is estimated at about 365.000.000 tones (**Tubiello** *et al.*, **2015**). Potato is a critical crop in terms of food security and more than one billion populations around the globe consume potato. Potato is vegetatively propagated, meaning that a whole plant can be grown from a potato tuber or a piece of it.

One plant can produce 5-20 new tubers, which will be genetic clone of the mother plant. Potato has a long history of improvement through traditional breeding. Breeders target multiple traits, including resistance to biotic and abiotic stresses, and tuber quality (**Singh** *et al.*, **2000**). Adaptation and response to these stresses is highly complex and involve changes at the molecular, cellular, and physiological levels.

2- Abiotic and biotic stresses

Abiotic stress factors such as heat, drought, and salinity have a significant impact on cultivated potato, affecting yield, tuber quality, and market value (**Ishitani** *et al.*, **2011**).

Biotic stress is stress that occurs as a result of damage plants by other living organisms, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants, among them late blight and early blight are fungal diseases, viruses as potato virus X (PVX), potato virus S (PVS), Potato virus Y (PVY) and potato leaf-roll virus (PLRV), bacterial wilt, wart and cyst nematodes (Flynn, 2003).