

PROGRESSIVE COLLAPSE ASSESSMENT FOR MULTI-STORY STEEL STRUCTURES UNDER SEISMIC LOADING

By

Yara Maged Mahmoud Soliman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

PROGRESSIVE COLLAPSE ASSESSMENT FOR MULTI-STORY STEEL STRUCTURES UNDER SEISMIC LOADING

By

Yara Maged Mahmoud Soliman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Structural Engineering

Under the Supervision of

Prof. Dr. Sherif Ahmed Mourad	Prof. Dr. Hesham Sobhy Sayed	
Professor of Steel Structures	Professor of Steel Structures	
Structural Engineering Department	Structural Engineering Department	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	
Dr. Maha	Moddather	
Assistar	nt Professor	

C. . 1E :

Structural Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

PROGRESSIVE COLLAPSE ASSESSMENT FOR MULTI-STORY STEEL STRUCTURES UNDER SEISMIC LOADING

By Yara Maged Mahmoud Soliman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Structural Engineering

Approved by the examining committee:

Prof. Dr. Sherif Ahmed Mourad Professor, Structural Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Hesham Sobhy Sayed Professor, Structural Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Ahmed Farouk Hassan Professor, Structural Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Mohamed Abdel Kader Elaghoury Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Yara Maged Mahmoud Soliman

Date of Birth: 1/10/1990 **Nationality:** Egyptian

E-mail: yara_maged@hotmail.com

Phone: 01150113302

Address: El-Sheikh Zayed, Giza, Egypt

Registration Date:1/10/2012Awarding Date:..../..../ 2017.Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Sherif Ahmed Mourad Prof. Hesham Sobhy Sayed Assist. Prof. Maha Moddather

Examiners:

Prof. Sherif Ahmed Mourad Prof. Hesham Sobhy Sayed Prof. Ahmed Farouk Hassan

Prof. Mohamed Abdel Kader Elaghoury (Professor-Structural Engineering- Ain Shams University)

Title of Thesis:

PROGRESSIVE COLLAPSE ASSESSMENT FOR MULTI-STORY STEEL STRUCTURES UNDER SEISMIC LOADING

Key Words:

Progressive collapse; Moment Resisting Frames; Braced Frames; Column Removal; Seismic Loads.

Summary:

The progressive collapse of steel structures is initiated when one or more vertical load carrying members are removed. The building's applied loads transfer to neighboring columns in the structure, leads to the failure of partial or whole structural system. In this study, two types of steel structures are evaluated as per Unified Facilities Criteria (UFC) guidelines. Non-linear dynamic analysis is carried out using software SAP2000. Gravity Loads and Seismic Loads combinations were applied to the structures to study the progressive collapse resistance of each structure.

Acknowledgments

First and above of all, I have to thank Allah providing me with the opportunity to meet such helpful and wonderful people those who helped me from the start of this thesis. All praises to Allah for giving me knowledge, strength, support and patience to present this work.

I would like to express my deepest sense of gratitude to my respectable supervisors; **Prof. Dr. Sherif Ahmed Mourad, Prof. Dr. Hesham Sobhy Sayed** and **Dr. Maha Moddather**; who offered me the honor to be one of their students. I thank them for their continuous advice and encouragement, guidance, extreme caring, and great effort to provide me with an excellent atmosphere for doing this research.

It gives me pleasure to thank my dear husband. He is always my source of strength, and without his support, this thesis would never have started much less finished.

Of course, I can't forget all my sisters and my brother. They were so patient throughout the thesis journey and they were my backbone in all times.

Finally; I would like to thank all my friends and colleagues for supporting me and being by my side in all times.

Hoping this thesis would be a step towards a better understanding of our current needs and a better development of our country.

Yara M.M.

Dedication

I lovingly dedicate this work to *my father* and *my mother*, for their care, guidance, help and patience. I do believe that, I could not success in all my life steps without their continuous support and prayers. May Allah bless them

Table of Contents

Acknow	vledgments	i
Dedicati	ion	ii
Table of	f Contents	iii
List of 7	Γables	. vii
List of F	Figures	viii
List of A	Abbreviations and Symbols	xvi
Abstract	t>	kvii
Chapter	1: Introduction	1
1.1.	General	1
1.2.	Objective	3
1.3.	Outline of the thesis	3
Chapter	2 : Literature Review	4
2.1.	Introduction	4
2.2.	Progressive Collapse Definition	4
2.3.	Causes of Progressive Collapse	4
2.4.	Previous Research on Progressive Collapse	5
2.4.1.	Previous Research on Progressive Collapse for Gravity-Loaded Structures	6
2.4.2.	Previous Research on Progressive Collapse due to Seismic Loads	8
2.5.	Codes and Standards	9
2.5.1.	New York City Building Code	9
2.5.2.	National Building Code of Canada (NBC)	9
2.5.3.	American Society of Civil Engineers (ASCE 7)	. 10
2.5.4.	American Concrete Institute (ACI 318)	. 10
2.5.5.	General Service Administration Progressive Collapse Guidelines 2003	. 10
2.5.6.	Department of Defense (DoD), Unified Facilities Criteria (UFC)	. 11
2.6.	Progressive Collapse Design Methods	. 14
.2.6.1	Direct Design Approach	. 14
2.6.1.1.	Alternate Load Path Method	. 15
2.6.1.2.	Specific Local Resistance Method	. 15
2.6.2.	Indirect Design Approach	. 15

2.6.2.1.	Tie Force Approach	15
2.7.	Methods of Analysis for Progressive Collapse	15
2.7.1.	Linear Static Method	16
2.7.2.	Nonlinear Static Method	16
2.7.3.	Linear Dynamic Method	16
2.7.4.	Non-linear Dynamic Method	17
2.8.	Progressive Collapse Analysis Programs	17
2.8.1.	Extreme Loading for Structures	17
2.8.2.	FLEX	17
2.8.3.	LS-DYNA	18
2.8.4.	SAP2000, ETABS and PERFORM 3D	18
Chapter	3 :Methodology	19
3.1.	Introduction	19
3.2.	Case Study	19
3.2.1.	Details of the studied structures	19
3.2.2.	Material Properties	23
3.2.3.	Loads	25
3.2.4.	Earthquake Loading Assumptions	26
3.2.5.	Earthquake Simulation	26
3.2.6.	Parametric Study Variables	29
3.3.	Verification Example	29
3.3.1.	Structural Steel Frame Example	29
3.3.2.	Modeling assumptions	30
3.3.3.	Loading assumptions	30
3.3.4.	Method of Analysis	30
3.3.5.	Results	31
Chapter	4 :Analysis Results	33
4.1.	Introduction	33
4.2.	Moment Resisting Frames	33
4.2.1.	Corner Column Removal	33
4.2.1.1.	Column Removal under gravity load combination for the 5-stories building	33
4.2.1.2.	Column Removal under seismic load combination for the 5-stories building	35
4.2.1.3.	Column Removal under gravity load combination for the 7-stories building	37
4.2.1.4	Column Removal under seismic load combination for the 7-stories building	39

4.2.1.5.	Column Removal under gravity load combination for the 10-stories building 41
4.2.1.6.	Column Removal under seismic load combination for the 10-stories building 43
4.2.2.	Edge Column Removal
4.2.2.1.	Column Removal under gravity load combination for the 5-stories building 46
4.2.2.2.	Column Removal under seismic load combination for the 5-stories building 48
4.2.2.3.	Column Removal under gravity load combination for the 7-stories building 50
4.2.2.4.	Column Removal under seismic load combination for the 7-stories building 52
4.2.2.5.	Column Removal under gravity load combination for the 10-stories building 54
4.2.2.6.	Column Removal under seismic load combination for the 10-stories building 56
4.2.3.	Interior Column Removal
4.2.3.1.	Column Removal under gravity load combination for the 5-stories building 58
4.2.3.2.	Column Removal under seismic load combination for the 5-stories building 60
4.2.3.3.	Column Removal from under gravity load combination for the 7-stories building 62
4.2.3.4.	Column Removal under seismic load combination for the 7-stories building 64
4.2.3.5.	Column Removal under gravity load combination for the 10-stories building 66
4.2.3.6.	Column Removal under seismic load combination for the 10-stories building 68
4.3.	Braced Frames
4.3.1.	Corner Column Removal
4.3.1.1.	Column Removal under gravity load combination for the 5-stories building 70
4.3.1.2.	Column Removal under seismic load combination for the 5-stories building 72
4.3.1.3.	Column Removal under gravity load combination for the 7-stories building
4.3.1.4.	Column Removal under seismic load combination for the 7-stories building 76
4.3.1.5.	Column Removal under gravity load combination for the 10-stories building 78
4.3.1.6.	Column Removal under seismic load combination for the 10-stories building 80
4.3.2.	Edge Column Removal
4.3.2.1.	Column Removal under gravity load combination for the 5-stories building 82
4.3.2.2.	Column Removal under seismic load combination for the 5-stories building 84
4.3.2.3.	Column Removal under gravity load combination for the 7-stories building 86
4.3.2.4.	Column Removal under seismic load combination for the 7-stories building 88
4.3.2.5.	Column Removal under gravity load combination for the 10-stories building 90
4.3.2.6.	Column Removal under seismic load combination for the 10-stories building 92
4.3.3.	Interior Column Removal
4.3.3.1.	Column Removal under gravity load combination for the 5-stories building 94
4.3.3.2.	Column Removal under seismic load combination for the 5-stories building 96

4.3.3.3.	Column Removal under gravity load combination for the 7-stories building	98
4.3.3.4.	Column Removal under seismic load combination for the 7-stories building	101
4.3.3.5.	Column Removal under gravity load combination for the 10-stories building	104
4.3.3.6.	Column Removal under seismic load combination for the 10-stories building	106
4.3.4.	Edge Column with Adjacent Bracing Removal	109
4.3.4.1.	Column Removal under gravity load combination for the 5-stories building	109
4.3.4.2.	Column Removal under seismic load combination for the 5-stories building	111
4.3.4.3.	Column Removal under gravity load combination for the 7-stories building	114
4.3.4.4.	Column Removal under seismic load combination for the 7-stories building	116
4.3.4.5.	Column Removal under gravity load combination for the 10-stories building	119
4.3.4.6.	Column Removal under seismic load combination for the 10-stories building	121
4.4.	Discussion of analysis results	124
4.4.1.	Moment Resisting Frames:	124
4.4.1.1.	Satisfying the UFC guidelines requirements:	124
4.4.1.2.	Effect of the removed column location on the maximum displacement	124
4.4.1.3.	Effect of no. of stories on the maximum displacement	125
4.4.1.4.	Effect of load combination on the maximum displacement	125
4.4.2.	Braced Frames :	126
4.4.2.1.	Satisfying the UFC guidelines requirements:	126
4.4.2.2.	Effect of the location of the removed column on the maximum displacement	126
4.4.2.3.	Effect of no. of stories on the maximum displacement	126
4.4.2.4.	Effect of load combination on the maximum displacement:	127
Chapter	5 :Summary, Conclusion and Recommendations	128
5.1.	Summary	128
5.2.	Conclusions	129
5.3.	Recommendations for future studies	130
Referen	ces	131
Append	ix A	134
قدمة	الفصل الأول : الما	1
غقبا	الفصل الثاني :المر اجع و الدر اسات الس	1
حثية	الفصل الثالث : الخطة الب	1
تائج	الفصل الرابع: الذ	1

List of Tables

Table (2-1)	Occupancy Categories	12
Table (2-2)	Occupancy Categories and design requirements	12
Table (2-3)	Deformation limits for steel	13
Table (3-1)	Design Table for 5-stories of Moment Resisting Frames Structures	21
Table (3-2)	Design Table for 5-stories of Braced Frames Structures	23
Table (3-3)	Member size of modelled structure	30
Table (3-4)	Results of SAP2000 model vs OpenSees model	31
Table (5-1)	The analysis cases that have been studied	119
Table (A.1)	Design Table for 7-stories of Moment Resisting Frames Structures	133
Table (A.2)	Design Table for 7-stories of Braced Frames Structures	134
Table (A.3)	Design Table for 10-stories of Moment Resisting Frames Structures	135
Table (A.4)	Design Table for 10-stories of Braced Frames Structures	136

List of Figures

Figure (1-1)	Ronan Point Failure	1
Figure (1-2)	Murrah Federal Building Failure	1
Figure (1-3)	World Trade Center Collapse on 11 September 2011	2
Figure (1-4)	The Kaiser Permanente Building, the Northridge earthquake	2
Figure (1-5)	Beichuan branch of the 'Agriculture Development Bank in China'	
_	after Beichuan earthquake in 2008	2
Figure (2-1)	Causes of Progressive Collapse	5
Figure (2-2)	GSA (2003) Recommendations for column removal for buildings	11
Figure (2-3)	Tie Forces in a frame structure	13
Figure (2-4)	Progressive Collapse Design Approach Diagram	14
Figure (3-1)	3D view for the 5-stories of Moment Resisting Frames	20
Figure (3-2)	Elevation view for the 5-stories of Moment Resisting Frames	20
Figure (3-3)	Plan view for Moment Resisting Frames	21
Figure (3-4)	3D view for the 5-stories of Braced Frames	22
Figure (3-5)	Elevation view for the 5-stories of Braced Frames	22
Figure (3-6)	Plan view for Braced Frames	23
Figure (3-7)	Stress-Strain Curve for St-37 in SAP2000	24
Figure (3-8)	Plastic Hinge Definition for Beams in SAP2000	24
Figure (3-9)	Column Removal Procedure for Dynamic Analysis	25
Figure (3-10)	Time History Function used to model sudden column loss	25
Figure (3-11)	Time History Function Definition in SAP2000	26
Figure (3-12)	The response spectrum from the ECP	26
Figure (3-13)	Generated Earthquake from the Response Spectrum of the structure	27
Figure (3-14)	Intensity Function used to simulate transient character of real	
	earthquakes	27
Figure (3-15)	Input data for the SeismoArtif software	28
Figure (3-16)	Output data for the SeismoArtif Software	28
Figure (3-17)	Steel Building Elevation	30
Figure (3-18)	Column Removal Location	31
Figure (3-19)	Deformation and Hinge Formation after column removal (Paper)	32
Figure (3-20)	Deformation and Hinge Formation after column removal (SAP2000	32
E' (4 1)	model)	
Figure (4-1)	Displacement of joint above the removed column due to removal of	~ 4
	corner column under gravity load	34

Figure (4-2)	Deformed shape along axis (1) due to removal of corner column under
Figure (4.2)	gravity load
Figure (4-3)	Maximum bending moments in beams along axis (1) after column removal due to removal of corner column under gravity load
Figure (4-4)	Displacement of joint above the removed column due to removal of
11guie (4-4)	corner column under seismic load
Figure (4-5)	Deformed shape along axis (1) due to removal of corner column under
11guic (4-3)	seismic load
Figure (4-6)	Maximum bending moments in beams along axis (1) after column
11guic (4-0)	removal due to removal of corner column under seismic load
Figure (4-7)	Displacement of joint above the removed column due to removal of
riguie (17)	corner column under gravity load
Figure (4-8)	Deformed shape along axis (1) due to removal of corner column under
riguie (10)	gravity load
Figure (4-9)	Maximum bending moments in beams along axis (1) after column
118010 (17)	removal due to removal of corner column under gravity load
Figure (4-10)	Displacement of joint above the removed column due to removal of
8 (15)	corner column under seismic load
Figure (4-11)	Deformed shape along axis (1) due to removal of corner column under
8	seismic load
Figure (4-12)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of corner column under seismic load
Figure (4-13)	Displacement of joint above the removed column due to removal of
	corner column under gravity load
Figure (4-14)	Deformed shape along axis (1) due to removal of corner column under
	gravity load
Figure (4-15)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of corner column under gravity load
Figure (4-16)	Displacement of joint above the removed column due to removal of
	corner column under seismic load
Figure (4-17)	Deformed shape along axis (1) due to removal of corner column under
	seismic load
Figure (4-18)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of corner column under seismic load
Figure (4-19)	Displacement of joint above the removed column due to removal of
	edge column under gravity load
Figure (4-20)	Deformed shape along axis (1) due to removal of edge column under
	gravity load
Figure (4-21)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of edge column under gravity load
Figure (4-22)	Displacement of joint above the removed column due to removal of
	edge column under seismic load
Figure (4-23)	Deformed shape along axis (1) due to removal of edge column under
	seismic load
Figure (4-24)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of edge column under seismic load

Figure (4-25)	Displacement of joint above the removed column due to removal of
	edge column under gravity load
Figure (4-26)	Deformed shape along axis (1) due to removal of edge column under gravity load
Figure (4-27)	Maximum bending moments in beams along axis (1) after column
	removal due to removal of edge column under gravity load
Figure (4-28)	Displacement of joint above the removed column due to removal of edge column under seismic load
Figure (4-29)	Deformed shape along axis (1) due to removal of edge column under seismic load
Figure (4-30)	Maximum bending moments in beams along axis (1) after column removal due to removal of edge column under seismic load
Figure (4-31)	Displacement of joint above the removed column due to removal of edge column under gravity load
Figure (4-32)	Deformed shape along axis (1) due to removal of edge column under gravity load
Figure (4-33)	Maximum bending moments in beams along axis (1) after column
118010 (100)	removal due to removal of edge column under gravity load
Figure (4-34)	Displacement of joint above the removed column due to removal of
1 15u10 (T-3T)	edge column under seismic load
Figure (4-35)	Deformed shape along axis (1) due to removal of edge column under seismic load
Figure (4-36)	Maximum bending moments in beams along axis (1) after column
8 ()	removal due to removal of edge column under seismic load
Figure (4-37)	Displacement of joint above the removed column due to removal of interior column under gravity load
Figure (4-38)	Deformed shape along axis (2) due to removal of interior column under gravity load
Figure (4-39)	Maximum bending moments in beams along axis (2) after column removal due to removal of interior column under gravity load
Figure (4-40)	Displacement of joint above the removed column due to removal of interior column under seismic load
Figure (4-41)	Deformed shape along axis (2) due to removal of interior column under seismic load
Figure (4-42)	Maximum bending moments in beams along axis (2) after column removal due to removal of interior column under seismic load
Figure (4-43)	Displacement of joint above the removed column due to removal of interior column under gravity load
Figure (4-44)	Deformed shape along axis (2) due to removal of interior column under gravity load
Figure (4-45)	Maximum bending moments in beams along axis (2) after column removal due to removal of interior column under gravity load
Figure (4-46)	Displacement of joint above the removed column due to removal of interior column under seismic load
Figure (4-47)	Deformed shape along axis (2) due to removal of interior column under seismic load

Figure (4-48)	Maximum bending moments in beams along axis (2) after column	
	removal due to removal of interior column under seismic load	65
Figure (4-49)	Displacement of joint above the removed column due to removal of	
	interior column under gravity load	66
Figure (4-50)	Deformed shape along axis (2) due to removal of interior column	
	under gravity load	66
Figure (4-51)	Maximum bending moments in beams along axis (2) after column	
	removal due to removal of interior column under gravity load	67
Figure (4-52)	Displacement of joint above the removed column due to removal of	
	interior column under seismic load	68
Figure (4-53)	Deformed shape along axis (2) due to removal of interior column	
	under seismic load	68
Figure (4-54)	Maximum bending moments in beams along axis (2) after column	
	removal due to removal of interior column under seismic load	69
Figure (4-55)	Displacement of joint above the removed column due to removal of	
	corner column under gravity load	70
Figure (4-56)	Deformed shape along axis (1) due to removal of corner column under	
	gravity load	70
Figure (4-57)	Maximum bending moments in beams along axis (1) after column	
	removal due to removal of corner column under gravity load	71
Figure (4-58)	Displacement of joint above the removed column due to removal of	
	corner column under seismic load	72
Figure (4-59)	Deformed shape along axis (1) due to removal of corner column under	
	seismic load	72
Figure (4-60)	Maximum bending moments in beams along axis (1) after column	
	removal due to removal of corner column under seismic load	73
Figure (4-61)	Displacement of joint above the removed column due to removal of	
	corner column under gravity load	73
Figure (4-62)	Deformed shape along axis (1) due to removal of corner column under	
	gravity load	74
Figure (4-63)	Maximum bending moments in beams along axis (1) after column	
	removal due to removal of corner column under gravity load	75
Figure (4-64)	Displacement of joint above the removed column due to removal of	
	corner column under seismic load	76
Figure (4-65)	Deformed shape along axis (1) due to removal of corner column under	
	seismic load	76
Figure (4-66)	Maximum bending moments in beams along axis (1) after column	
	removal due to removal of corner column under seismic load	77
Figure (4-67)	Displacement of joint above the removed column due to removal of	
	corner column under gravity load	78
Figure (4-68)	Deformed shape along axis (1) due to removal of corner column under	
	gravity load	78
Figure (4-69)	Maximum bending moments in beams along axis (1) after column	
	removal due to removal of corner column under gravity load	79
Figure (4-70)	Displacement of joint above the removed column due to removal of	
	corner column under seismic load	80