A Conservative Approach for Replacing Missing Maxillary 2nd Premolar using Endodontically Treated Abutments

Thesis Submitted to Faculty of Oral and Dental Medicine,
Ain Shams University
For Partial Fulfillment of the Requirements for PhD Degree
In Fixed Prosthodontics

BY

Faisal Safwat Kamal Hamza

(B.D.S)
Misr University for Science and Technology (MUST)
(2004)

(M.Sc.)
Fixed Prosthodontics Department, Cairo University (2011)

Assistant lecturer Fixed Prosthodontics Department, MSA University

(2017)

Under Supervision of

Dr. Tarek Salah Morsi

Professor of Fixed Prosthodontics

Faculty of Dentistry,

Ain Shams University

Dr. Amr Saleh El-Etreby

Assistant Professor of Fixed Prosthodontics

Faculty of Dentistry,

Ain Shams University

List of contents

List of contents	i
List of Figures	iii
List of tables	vii
Introduction	1
Review of Literature	3
Statement of Problem	27
Aim of Study	29
Materials and Methods	31
Results	71
Discussion	95
Summary	103
Conclusion:	107
References	109
Arabic summary	1

List of Figures

Figure 1:IPS e.max [®] press ingots (a) and InCoris TZI blocks (b)33
Figure 2: FibreKleer TM 4x Fiber Post (Tapered)34
Figure 3:Build-It TM FR34
Figure 4: Self-adhesive resin cements (a) Breeze, (b) Panavia SA cement Plus
Figure 5:a)Phosphoric acid b) Adhesive bond for composite36
Figure 6: a) Hydrofluoric acid b) Porcelain primer36
Figure 7: Reference lines drawn on the axial surface of maxillary 1st premolar (a) and of maxillary 1st molar (b)38
Figure 8: C.N.C lathe-cut machine42
Figure 9: (a) Schematic diagram showing preparation design parameters of group I (full-coverage retainers "F") samples (b).43
Figure 10: (a) Schematic diagram showing preparation design parameters of group II (endocrown retainers "E") samples (b) (buccal view)
Figure 11: Schematic diagram showing preparation design parameters of group II (endocrown retainers "E") (occlusal view)
Figure 12: Steps of endocrown preparation, decoronation (a), central cavity preparation (b) and proximal box preparation (c)
Figure 13: Proximal view of endocrown preparations showing proximal box design and transition from cervical walk to proximal box

Figure 14: Fiber post try-in (a) and radiograph of post try-in (b)46
Figure 15: Software interface47
Figure 16: In Lab Scanning of samples48
Figure 17: Scanned bridges viewer48
Figure 18: Final view of Scanned sample49
Figure 19: Margin detection49
Figure 20:Auto Design of endocrown bridge50
Figure 21: Milling interface51
Figure 22: Positioning Bridge in wax disc51
Figure 23: (a) wax disc and (b) Vhf milling machine51
Figure 24: Wax pattern endocrown bridge52
Figure 25:Investmentring after pressing53
Figure 26:Pressed bridge after divesting and before sprue trimming.54
Figure 27: IPS e.max Press bridge54
Figure 28: Finished bridges for subgroup I (a) and for subgroup III (b)55
Figure 29: Scanning bridges using Omnicam56
Figure 30: Selection of finish line57
Figure 31: Insertion axis selection of the restoration57
Figure 32: Measuring the connector dimensions58
Figure 33: Milling Zirconia endocrown bridge59

Figure 34: Zirconia endocrown bridges before sintering60
Figure 35: Zirconia bridges lying on a bed of beads61
Figure 36:Zirconia bridges after sintering61
Figure 37: Folliscope62
Figure 38: Acid etching of IPS e.max FPD63
Figure 39: Dryness after rinsing of hydrofluoric acid63
Figure 40:Silanation of specimens64
Figure 41:Tooth surface etching by phosphoric acid (a) and rinsing (b)65
Figure 42: Adhesive application66
Figure 43: Seating of bridge during cementation under finger pressure66
Figure 44: Tap curing (a) before excess cement removal(b)67
Figure 45: Light curing from different directions67
Figure 46: Chewing simulator device68
Figure 47: Holding the specimens in chewing simulator device chamber
Figure 48: Static vertical load application on the pontic69
Figure 49: Marginal gap measurments representing EZ group72
Figure 50: Marginal gap measurments representing group ELi73
Figure 51: Marginal gap measurments representing group FLi74
Figure 52: Marginal gap measurments representing group FZr75

Figure 53: Bar chart showing average marginal gap mean and standard deviation of different investigated groups in this study
Figure 54: Bar chart showing the influence of bridge material on the marginal adaptation of posterior bridge, regardless of the bridge retainer type.:
Figure 55: Bar chart showing the influence of retainer type on the marginal adaptation of posterior bridges, regardless of bridge material
Figure 56:Bar chart showing residual fracture resistance mean and standard deviation of different investigated groups in this study
Figure 57: Bar chart showing the influence of bridge material on the residual fracture resistance of posterior bridge, regardless of the bridge retainer type
Figure 58: Bar chart showing the influence of retainer type on the residual fracture resistance of posterior bridges, regardless of bridge material
Figure 59: 100% stacked column chart showing the percentages of different modes of fracture in different study groups89
Figure 60: Fracture mode represent FLi group91
Figure 61: Fracture mode represent FZr group91
Figure 62: Fracture mode represent ELi group92
Figure 63: Fracture mode represent EZr group92

List of tables

Table 1: Materials composition and manufacturer31
Table 2: Factorial design of the variables investigated in this study41
Table 3: Average marginal gap [Mean (mm) ± Standard deviation] of different types of retainers with different restorative materials
Table 4: 2-way ANOVA of the 2 variables, bridge material, and type of bridge retainers on the marginal adaptation of the posterior bridge
Table 5: One-way ANOVA of the influence of posterior bridge material on the marginal adaptation regardless of the retainer type, showing mean (mm) \pm standard deviation 78
Table 6: Paired t-test of the influence of retainer type on the marginal adaptation regardless of bridge material, showing mean (mm) ± standard deviation79
Table 7: Paired sample t-test of the influence of the interactions of retainer type and bridge material on the marginal adaptation, showing mean (mm)
Table 8: Residual fracture resistance [Mean (N) ±Standard deviation] of different types of retainers with different restorative materials
Table 9: Two-way ANOVA of the 2 variables, bridge material, and type of bridge retainers on residual fracture resistance of posterior bridge
Table 10: One-way ANOVA of the influence of posterior bridge material on the residual fracture resistance regardless of the retainer type, showing mean (N) \pm standard deviation85

Table 11: paired t-test of the influence of retainer type on the
residual fracture resistance regardless of bridge material,
showing mean (N) \pm standard deviation86
Table 12: Paired sample t-test of the influence of the interactions
of retainer type and bridge material on residual fracture
resistance, showing mean (N)87
Table 13: The percentages of different modes of fracture in
different study groups89

Introduction

The popularity of metal-ceramic restorations is wide due to the predictable strength achieved, in combination with reasonable esthetics. The drawback of such restorations is their increased light reflectivity as result of the opaque porcelain needed to mask the metal substrate. All ceramic materials offer an esthetic advantage leading to the success of all-ceramic crowns and patient demand for metal-free, tooth-colored restorations, which has led to the development and introduction of restorative systems for all-ceramic fixed partial dentures (FPDs).

High-strength all-ceramic systems for FPDs are available for replacing a missing tooth. New core/framework materials have been developed in the last decade. With the advancement of CAD/CAM technology, various fabrication techniques have been developed for fabricating improved, consistent and predictable restorations in terms of strength, marginal fit and esthetics. (1)

The primary reason for the reduction in stiffness andfracture resistance of endodontically treated tooth is attributed to its loss of structural integrity associated with caries, trauma and extensive cavity preparation, rather than dehydrationor physical changes in the dentin. The longevityof endodontic treatment is significantly influenced with the type of restorative materials used and use of appropriate restoration that conserves the tooth structure. (2)

Accordingly, this study was designed to compare the performance of two bridge designs supported on endodontically treated abutments.

Review of Literature

1 Endodontically treated teeth

1.1 <u>Teeth biomechanicalalterationscaused by endodontic treatment</u> <u>procedures</u>

Fractures are more common in non-vital teeth than vital teeth. ⁽³⁾Factors such as age, sex, anddental arch shape have proved to affect the liability of teeth fractures. ⁽⁴⁾*Chan et al.* (1999)⁽⁵⁾observed that the rate of fractureswas 1.4 times higher in male than in female patients and mostfractures occurred in the age 40-49years' age in males and in the 50-59 years' age in females.

Endodontically treated teeth have high risk of fractures related to loss of tooth structure during the access cavity preparation and canal cleaning and shaping in addition to already missing tooth structure caused by caries or previous restoration attempts, which cause loss of structural integrity. (3)

Structural failure of the tooth may be caused by stresses exceeding tooth strength, those were produced during tooth loading. (6)

1.2 <u>Dentin loss</u>

Caries development associated with endodontically treated teeth may lead to flared root canals, and thinning the root canal dentinal wall. These thin walls are at risk of fracture under normal masticatory force. (7) That is whyto restore these weak teeth is considered a challenge.

Mastication contains a lot of lateral forces that result in bending forces on the root. These stresses affect mainly the external root surface at the cervical third. (8)

During endodontic treatment, a large amount of dentin is removed which will further weaken the teeth, moreover stresses applied during canal preparation and obturation will affect and are considered as stress raisers. (9)

1.3 Root dentin changes

The mechanical properties of dentin depend on its collagen structure, which can be affecteddue to mechanical preparation and chemical materials used during root canal treatment. (10)

Common canal irrigation materials, such as sodium hypochlorite (NaOCl) and chelatorssuch as ethelene diamine tetraacetic acid (EDTA) interact with root dentin, either with mineral content (chelators) or the organic substrate (sodium hypochlorite). (11)

Zhejun et al(2016) ⁽¹²⁾ examined the level of erosion in root dentin comparing different irrigation methods and protocols. They concluded that irrigation with NaOCl after EDTA should be kept away from or done with great concern to avoid chemical weakening of the root. They found that irrigation with 3% and 5% NaOCl after EDTA lead to rapid loss of dentinal Calcium and Phosphate contents of dentin, at least to the depth of 300µm indentin. They recommended recent methods such as Gentle Wave System.

Restoration of endodontically treated teeth

Survival of endodontically treated teeth depends on successful root canal treatments followed by adequate restoration. Many restorations are suggested to restore endodontically treated teeth depending on the condition of each tooth. (13)

Fabrication of coronal restoration after endodontic treatment should be done as soon as possible; to avoid microleakagecoronally, which may increase the probability of periapical contamination and failure. (14)

Challengesin restoring endodontically treated teeth are related to physical, chemical and mechanical changes in teeth nature during and after root canal treatment. (2)

Direct restoration:

Polesel (2014) ⁽¹⁴⁾considereddirect restoration successful and applicable in cases with small amount of tooth structure loss during endodontic treatment, such as access cavity only, even if tooth loss involves only one marginal ridge.

Kovarik (2009)⁽¹⁵⁾ agreed that restoring endodonticallytreated posterior teeth by composite is considered as a proper line of treatment and mainly in premolar region. On the other hand, *Weirong et al* (2010)⁽¹⁶⁾ suggested full coverage restorations for all posterior teeth, except the lower 1st premolar in cases with underdeveloped lingual cusp, since there are no wedging forces of upper teeth.

Indirect Restorations:

Full coverage

Ferrule effect

Successful restoration of endodontically treated teeth can be attempted only if the prosthodontist takes into consideration the amount of the remaining tooth structure above the bone level, in order to produce a non-invasive restoration which can be away from the biological width and its margin on sound tooth structure. Both coronal and radicular remaining tooth