

# Ain Shams University Faculty of Engineering

## Dowel action effect on the shear capacity of reinforced concrete beams

## By **Eng. Dina Nabil Wadie**

B.Sc. 2002, Structural Division Civil Engineering Department – Faculty of Engineering Ain Shams University

# A Thesis Submitted in Partial Fulfilment of the Requirements of the Degree of Master of Science in Structural Engineering

Supervised By

#### Prof. Dr. Osama Hamdy Abdel Wahed

Professor of RC Structures, Structural Engineering Department, Faculty of Engineering, Ain Shams University

#### Dr. Mohamed Nabil Mohamed

Assistant Professor of RC Structures, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Cairo – Egypt 2009

**STATEMENT** 

This thesis is submitted to Ain Shams University in partial fulfilment

of the requirements for the degree of Master of Science in Structural

Engineering.

The work included was carried out by the author at Reinforced

Concrete Laboratory of the Faculty of Engineering, Ain Shams

University.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date : / / 2009

Name : Dina Nabil Wadie

Signature : Dina Nabil

#### **AUTHOR**

Name : Dina Nabil Wadie

Date of birth : 17 June 1980 Place of birth : Cairo, Egypt.

Academic Degree : B.Sc. in Structural Engineering

University : Ain Shams University

Date : June 2002

Experiences : **2002-2008:** Senior Estimator – Tendering Dep.

**ORASCOM Construction Industries** 

Current Job: Deputy Technical Office

Manager – Engineering Construction Office

(ENCO)

Other Certificates : PRMG Diploma, Professional Courses in

Project Management, the American University

in Cairo, Cairo, Egypt (2004 – 2006)

#### **EXAMINERS COMMITEE**

|                                                                                                                                                     | Signature                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Prof. Dr. Ibrahim Galal Shaaban Professor of Reinforced Concrete Structures Head of Structural Department Faculty of Engineering – Sobra University |                                         |
| Prof. Dr. Omar Ali Moussa El Naway Professor of Reinforced Concrete Structures Faculty of Engineering – Ain Shams University                        | ••••••••••••••••••••••••••••••••••••••• |
| Prof. Dr. Osama Hamdy Abdel Wahed Professor of Reinforced Concrete Structures Faculty of Engineering – Ain Shams University                         | •••••                                   |

**Date:** / /

#### **ACKNOWLEDGEMENT**

First of all, I thank GOD who guided and helped me to finish this work in the proper shape.

I would like to thank my mother, my sister, brother in law and my whole family for their continuous support and encouragement.

I would like to express my deep appreciation to my dear Professor Dr. Osama Hamdy, Professor of Concrete Structures, Ain Shams University, EGYPT, for his experienced advice, valuable suggestions, continuous support and deep encouragement through all phases of the work.

I am also extremely grateful to Dr. Mohamed Nabil, Assistant Professor of concrete structures, faculty of engineering, Ain Shams University, for his experienced advice, continuous support and deep encouragement through all phases of the work.

I would like to thank the technicians of the reinforced concrete laboratory, Ain Shams University, for their kind help during the experimental phase of this study.

Finally, I would like to thank my dear friends and colleagues who helped me in the completion of this work, especially Ahmed Akl and Amir Nassif.

**ABSTRACT** 

TITLE: "Dowel Action Effect on the Shear Capacity of Reinforced

Concrete Beams"

**Submitted by: Eng. Dina Nabil Wadie** 

Supervised by: Prof. Dr. Osama Hamdy Abdel Wahed

Dr. Mohamed Nabil Mohamed

If the longitudinal reinforcement of a beam is loaded by a component

of a force acting perpendicular to the reinforcement bars this is called

dowel action.

Shear capacity of reinforced concrete beams depends on Concrete

strength, Stirrups volume and Presence of longitudinal steel which can

lead to a better reinforcement distribution in order to develop new

economical design.

Since most of codes and especially Egyptian code do not take into

consideration the effect of dowel action of longitudinal bars on the

shear capacity of reinforced concrete beams and due to lack of study of

the dowel action effect on the shear capacity of reinforced concrete

beams therefore we need more studies and research in this field.

The main objective of this thesis is to examine, experimentally and

theoretically, effect of cross section area of longitudinal steel on the

shear capacity of reinforced concrete beams, effect of location and

distribution of longitudinal steel on the shear capacity of reinforced

concrete beams and effect of Concrete Strength on the shear capacity of

reinforced concrete beams under two eccentric concentrated load, from

zero up to failure load (causing combined bending, torsion and shear stresses).

The experimental program consisted of testing eight medium scale models of reinforced concrete beams. All the specimens had a clear span of 2.00 m and a total length of 2.30 m. The cross section dimensions were  $150\times300$  mm. All the tested beams had the same bottom reinforcement of  $2\phi16$  and variable additional reinforcement. Stirrups were  $5\phi6/m$  in all beams except specimen B6 which is without stirrups to examine the effect of the dowel action.

All beams were simply supported and symmetrically loaded with two concentrated loads with distance 500 mm from the support and consequently, the shear force is one-half the total applied load.

The analytical program considered in this study includes performing nonlinear finite element models using ABAQUS v6.7 program, taking into consideration the non-linear stress-strain curve of the concrete and steel. These models are performed to simulate the beams behaviour and to extend study of the behaviour of such beams. The FE results were compared to those obtained from the experiments and the results agreed in a satisfactory way.

Finally, design guidelines, analysis of test results of RC beams and recommendations were presented.

<u>Keywords:</u> Dowel action, Longitudinal bars, Shear Strength, Reinforced Concrete beams, nonlinear finite element models, Confinement effect.

### TABLE OF CONTENTS

| STATEMENT    |                                                               | ••••• |
|--------------|---------------------------------------------------------------|-------|
| ACKNOWLEI    | DGMENT                                                        |       |
| ARSTRACT     |                                                               |       |
|              |                                                               |       |
|              | ONTENTS                                                       |       |
| LIST OF FIGU | JRES                                                          | V     |
| LIST OF TAB  | LES                                                           | XI    |
| LIST OF PHO  | TOS                                                           | XII   |
| CHAPTER 1    |                                                               | 1     |
|              | ION                                                           |       |
|              |                                                               |       |
|              | [ERAL                                                         |       |
|              | ECTIVES AND AIMS OF THE PRESENT STUDY                         |       |
| 1.3 THE      | SIS LAYOUT                                                    | 3     |
| CHAPTER 2    |                                                               | 6     |
|              | E REVIEW                                                      |       |
|              |                                                               |       |
|              | [ERAL                                                         |       |
|              | AR BEHAVIOR OF REINFORCED CONCRETE BEAMS                      |       |
| 2.2.1. M     | echanisms of Shear Transfer in Reinforced Concrete Beam       |       |
| 2.2.1.1.     | Shear stress of concrete in compression zone, V <sub>cz</sub> | 9     |
| 2.2.1.2.     | Aggregate interlock across diagonal crack plane, Va           | 10    |
| 2.2.1.3.     | Dowel action of longitudinal reinforcement, V <sub>d</sub>    |       |
| 2.2.1.4.     | Shear reinforcement, Vs                                       |       |
| 2.2.1.5.     | Arch action                                                   |       |
| 2.2.2. Sh    | near Failure Modes                                            |       |
| 2.2.2.1.     | Beams without Shear Reinforcement                             |       |
| 2.2.2.2.     | Beams with Shear Reinforcement                                |       |
| 2.2.3. Fa    | actors 999Affecting Shear Behavior and Capacity of Concrete   | Beams |
| 24           | <b>.</b>                                                      |       |
| 2.2.3.1.     | Concrete strength                                             | 24    |
| 2.2.3.2.     | Longitudinal reinforcement                                    | 25    |
| 2.2.3.3.     | Web Reinforcement                                             | 26    |
| 2.2.3.4.     | Shear Span-to-Depth Ratio, (a/d)                              | 27    |
| 2.2.3.5.     | Size of Beam                                                  | 28    |
| 2.2.3.6.     | Axial forces                                                  | 29    |
| 2.2.4. Ro    | ole of Web Reinforcement in Concrete Beams                    | 30    |
| 2.3 PRO      | VISIONS FOR SHEAR DESIGN IN DIFFERENT                         |       |
| INTERNATI    | ONAL CODES                                                    | 30    |

| 2.3.1. Shear Strength Provided By Concrete in RC Beams         | 31  |
|----------------------------------------------------------------|-----|
| 2.3.1.1. American Code, ACI 318-05                             | 31  |
| 2.3.1.2. Egyptian Code for Concrete Structures ECCS 203-2009   | 32  |
| 2.3.1.3. British Standards BS 8110                             | 32  |
| 2.3.1.4. European Code EC2                                     | 33  |
| 2.3.1.5. Australian Code, AS 3600                              | 34  |
| 2.3.1.6. New Zealand Code, NZS 3101                            | 34  |
| 2.3.1.7. Canadian Code CSA CAN3-A23.3                          | 35  |
| 2.3.1.8. Norwegian Code, NS 3473E                              |     |
| 2.3.2. Minimum Shear Reinforcement In Beams                    |     |
| 2.3.2.1. American Code, ACI 318-05                             |     |
| 2.3.2.2. Egyptian Code for Concrete Structures ECCS 203-2009   |     |
| 2.3.2.3. British Standards BS 8110                             |     |
| 2.3.2.4. European Code EC2                                     |     |
| 2.3.2.5. Canadian Code CSA CAN3-A23.3                          |     |
| 2.4 PREVIOUS WORK                                              |     |
| 2.4.1. Design of Member without Stirrups                       |     |
| 2.5 CONCLUDING REMARKS                                         | 50  |
|                                                                |     |
| CHAPTER 3                                                      |     |
| EXPERIMENTAL WORK                                              | 51  |
| 2.1 INTRODUCTION                                               | £ 1 |
| 3.1 INTRODUCTION                                               |     |
|                                                                |     |
|                                                                |     |
| 3.3.1. Concrete                                                |     |
| 3.3.1.1. Concrete Mix Proportions                              |     |
| 3.3.1.2. Quality Control Tests                                 |     |
| 3.4 CASTING AND CURING OF THE TESTED SPECIMENS                 |     |
| 3.5 EQUIPMENT AND INSTRUMENTATION                              |     |
| 3.6 TEST SETUP                                                 |     |
| 3.7 LOADING PROCEDURE                                          |     |
| 5./ LOADING PROCEDURE                                          | 09  |
| CHAPTER 4                                                      | 70  |
| EXPERIMENTAL RESULTS                                           |     |
|                                                                | 70  |
| 4.1 GENERAL                                                    | 70  |
| 4.2 BEHAVIOR OF THE TESTED BEAMS                               |     |
| 4.2.1. Cracking, Crack Patterns and Failure Load               |     |
| 4.2.2. Load-Deflection Response                                |     |
| 4.2.2.1. Load-deflection response of first group               |     |
| 4.2.2.2. Load-deflection response of the second group          |     |
| 4.2.2.3. Load-deflection response of the third group           |     |
| 4.2.2.4. Load-deflection response of the fourth group          |     |
| 4.2.2.5. Load-deflection response of the fifth group           |     |
| 4.2.2.6. Load-deflection response of the sixth group           |     |
| 4.2.3. Longitudinal Concrete Strains                           |     |
| 4.2.4 Effect of the Variation of Concrete Compressive Strength |     |

|   | 4.2.5. Transverse Steel Strains                        |      |
|---|--------------------------------------------------------|------|
|   | 1.5 CONCEOUNG REMINIO                                  | • // |
| C | CHAPTER 5                                              | 100  |
| F | INITE ELEMENT ANALYSIS AND RESULTS                     | 100  |
|   | 5.1 GENERAL                                            | 100  |
|   | 5.2 FORMULATION                                        |      |
|   | 5.2.1. Finite Element Method                           |      |
|   | 5.2.2. Plasticity                                      |      |
|   | 5.3 COMPUTER PROGRAM                                   | 109  |
|   | 5.3.1. Coordinate system                               | 110  |
|   | 5.3.2. Element Types                                   |      |
|   | 5.3.2.1. Concrete Element Degree of Freedom            |      |
|   | 5.3.2.2. Steel Rebar Element Degree of Freedom         | 113  |
|   | 5.3.3. Meshing                                         |      |
|   | 5.3.3.1. Concrete Mesh                                 |      |
|   | 5.3.3.3. Steel Plates Mesh                             |      |
|   | 5.3.4. Material Models                                 |      |
|   | 5.3.4.1. Concrete Model                                |      |
|   | 5.3.4.2. Steel Model                                   |      |
|   | 5.3.4.3. Steel Plates Model                            | 120  |
|   | 5.3.5. Solution Strategy                               |      |
|   | 5.3.5.1. Nonlinear Solution Methods in ABAQUS          |      |
|   | 5.3.5.2. Increments, and Iterations                    |      |
|   | 5.3.5.3. Convergence of the Linear System of Equations | 123  |
|   | 5.3.6. Program's Input and Output                      |      |
|   | 5.4 FINITE ELEMENT IDEALIZATION                        |      |
|   | 5.4.1. Finite Element Meshes                           |      |
|   | 5.4.3. Loading                                         |      |
|   | 5.4.4. Interactions                                    |      |
|   | 5.4.4.1. Concrete Beam and Steel Reinforcement         |      |
|   | 5.4.4.2. Concrete Beam and Steel Plates                |      |
|   | 5.4.5. Finite Element Models                           |      |
|   | 5.5 FINITE ELEMENT RESULTS                             |      |
|   | 5.5.1. Synopsis                                        | 133  |
|   | 5.6 DETAILS OF THE ANALYZED BEAMS                      |      |
|   | 5.6.1. Geometry, Loading and Supports                  |      |
|   | 5.6.2. Material properties                             |      |
|   | 5.6.3. Shear Capacity                                  |      |
|   | 5.6.4. Failure Modes                                   |      |
|   | 5.6.6. Longitudinal Concrete Strain                    |      |
|   | 5.6.7. Transverse Steel Strains                        |      |
|   | 5.0.7. Transverse steel status                         | 133  |
| C | THADTED 6                                              | 157  |

| COMPARISON BETWEEN THE EXPERIMENTAL AND THE FINITE |                                   |                   |
|----------------------------------------------------|-----------------------------------|-------------------|
| ELEME                                              | NT RESULTS                        | 157               |
| 6.1                                                | GENERAL                           |                   |
| 6.2                                                | CRACKING AND FAILURE LOADS        | 157               |
| 6.3                                                | DEFLECTION CHARACTERISTICS        | 165               |
| 6.4                                                | LONGITUDINAL CONCRETE STRAINS     | 175               |
| 6.5                                                | TRANSVERSE STEEL STRAINS          | 179               |
| 6.6                                                | PARAMETRIC STUDY                  | 182               |
| 6.6.1                                              | 1. General                        | 182               |
| 6.6.2                                              |                                   |                   |
| 6.6.3                                              | 3. Concluding Remarks             | 185               |
|                                                    |                                   |                   |
| CILADTI                                            |                                   |                   |
| CHAPII                                             | ER 7                              | 186               |
|                                                    | ER 7USIONS AND RECOMMENDATIONS    |                   |
|                                                    | USIONS AND RECOMMENDATIONS        | 186               |
| CONCL                                              | USIONS AND RECOMMENDATIONSSUMMARY | <b>186</b><br>186 |
| 7.1                                                | SUMMARY                           | 186<br>186<br>186 |
| 7.1<br>7.1.1                                       | SUMMARY                           |                   |
| 7.1<br>7.1.1<br>7.1.2                              | SUMMARY                           |                   |
| 7.1<br>7.1.1<br>7.1.2<br>7.2<br>7.3                | SUMMARY                           |                   |

## **LIST OF FIGURES**

| Figure (2.1): Component of Shear Force over Crack Plane (MacGregor et al., 2000)            |
|---------------------------------------------------------------------------------------------|
| Figure (2.2): Walraven's Model of Crack Friction                                            |
| Figure (2.3): Predicted and Observed Strengths of a Series of Reinforced Concrete           |
| Beams Tested by Kani (Collins and Mitchell 1997)                                            |
| Figure (2.4): Distribution of Internal Shears of Beam with Shear Reinforcement              |
| (MacGregor and Bartlett, 2000)                                                              |
| Figure (2.5): Types of Inclined Cracks                                                      |
| Figure (2.6): Effect of (a/d) on Shear for Beams without Shear Reinforcement                |
| (MacGregor, 1988)                                                                           |
| Figure (2.7): Shear Failure Modes (ASCE-ACI 426, 1973)                                      |
| Figure (2.8): Shear Strength vs. Longitudinal Reinforcement (MacGregor et al, 2000)         |
|                                                                                             |
| Figure (2.9): Shear Strength vs. a/d (Kani et al., 1979)                                    |
| Figure (2.10): Size Effect in Shear (Kuchma and Collins, 1998)                              |
| Figure (2.11): Effect of Axial Loads in Inclined Cracking Shear (MacGregor and              |
| Bartlett, 2000)                                                                             |
| Figure (2.12): Relationship between shear capacity and shear demand                         |
| Figure (2.13): Distribution of compressive and tensile stresses                             |
| Figure (2.14): Influence of Reinforcement on Spacing of Diagonal Cracks (ASCE-              |
| ACI Committee 445 on Shear and Torsion)                                                     |
| Figure (2.15): Values of $\beta$ and $\theta$ for RC beams containing less than the Minimum |
| Amount of Stirrups (ASCE-ACI Committee 445 on Shear and Torsion)                            |
| Figure (2.16): Example of Cracked Web of Beam Failing in Shear (ASCE- ACI                   |
| Committee 445 on Shear and Torsion)                                                         |
| Figure (3.1): Details of tested specimens                                                   |
| Figure (3.2-a): Details of Reinforcement of specimens B1 to B4, with $f_{cu}$ =25 MPa 54    |
| Figure (3.2-b): Detail Details of Reinforcement of specimens B5 to B6, with $f_{cu}$ =25    |
| MPa and $f_{cu} = 75$ MPa for specimens (B7 & B8)55                                         |

| Figure (5.1): Three-dimensional hexaheded brick element for concrete           | . 110       |
|--------------------------------------------------------------------------------|-------------|
| Figure (5.2): Truss Element for steel reinforcement                            | . 111       |
| Figure (5.3): Abaqus Solid element Library (Abaqus User Manual 2007)           | . 112       |
| Figure (5.4) Abaqus truss element Library (Abaqus User Manual 2007)            | . 113       |
| Figure (5.5) 3D Meshing of concrete part (3D view and cross section)           | . 114       |
| Figure (5.6): Meshing of both loading and supporting plates                    | . 115       |
| Figure (5.7): Mohr-Coulomb failure criterion                                   | . 117       |
| Figure (5.8): Mohr-Coulomb yield surface in meridional and deviatoric planes   | . 119       |
| Figure (5.9): Load-displacement diagrams with snap-back using constant increm  | ent         |
| size and (a) load control, (b) displacement control and (c) arc-length control | . 122       |
| Figure (5.10): Nonlinear Load Displacement Curve                               | . 122       |
| Figure (5.11): First Iteration in an Increment                                 | . 124       |
| Figure (5.12): Second Iteration                                                | . 126       |
| Figure (5.13): Loading Profile and Boundary Conditions                         | . 130       |
| Figure (5.14): Steel reinforcement (Truss Elements) embedded in concrete beam  |             |
| (Solid elements)                                                               | . 131       |
| Figure (5.15): FE models for beam specimens having shear span-to-depth ratios  | (a/d)       |
| = 2                                                                            | . 133       |
| Figure (5.16): Shear compression failure mode for beam specimens having        |             |
| compressive strength fcu=25 MPa                                                | . 133       |
| Figure (5.17): Shear compression failure mode for beam specimens having        |             |
| compressive strength fcu=75 MPa                                                | . 133       |
| Figure (5.18): Mid-Span Load-deflection curves for beam specimens (B1, B2 and  | l B3)       |
|                                                                                | . 142       |
| Figure (5.19): Mid-Span Load-deflection curves for beam specimens (B2 and B7)  | ).143       |
| Figure (5.20): Mid-Span Load-deflection curves for beam specimens (B3 and B8)  | ). 144      |
| Figure (5.21): Mid-Span Load-deflection curves for beam specimens (B3, B4 and  | <i>B5</i> ) |
|                                                                                | . 145       |
| Figure (5.22): Mid-Span Load-deflection curves for beam specimens (B5 and B6)  |             |
| Figure (5.23): Mid-Span Load-deflection curves for beam specimens (B7 and B8)  |             |
| Figure (5.24): Load-Strain curves for beam specimens (B1, B2 and B3) on top of | each        |
| hoam                                                                           | 148         |

| Figure (5.25): Load-Strain curves for beam specimens (B2 and B7) on top of each     |            |
|-------------------------------------------------------------------------------------|------------|
| beam                                                                                | !9         |
| Figure (5.26): Load-Strain curves for beam specimens (B3 and B8) on top of each     |            |
| beam                                                                                | $\epsilon$ |
| Figure (5.27): Load-Strain curves for beam specimens (B3, B4 and B5) on top of each | h          |
| beam                                                                                | 1          |
| Figure (5.28): Load-Strain curves for beam specimens (B5 and B6) on top of each     |            |
| beam                                                                                | 52         |
| Figure (5.29): Load-Strain curves for beam specimen (B7 and B8) on top of each      |            |
| beam                                                                                | iŝ         |
| Figure (5.30): Transverse Steel Load-Strain Curves for (B1, B2 and B3)              | 14         |
| Figure (5.31): Transverse Steel Load-Strain Curves for (B2 and B7)                  | 14         |
| Figure (5.32): Transverse Steel Load-Strain Curves for (B3 and B8)                  |            |
| Figure (5.33): Transverse Steel Load-Strain Curves for (B3, B4 and B5)              |            |
| Figure (5.34): Transverse Steel Load-Strain Curvse for (B7 and B8)                  |            |
| Figure (6.1): Contour lines for deflection of (B1)16                                | 0          |
| Figure (6.2): Contour lines for deflection of (B2)16                                | 0          |
| Figure (6.3): Contour lines for deflection of (B3)16                                | 0          |
| Figure (6.4): Contour lines for deflection of (B4)16                                | 1          |
| Figure (6.5): Contour lines for deflection of (B5)                                  | 1          |
| Figure (6.6): Contour lines for deflection of (B6)                                  | 1          |
| Figure (6.7): Contour lines for deflection of (B7)                                  | 2          |
| Figure (6.8): Contour lines for deflection of (B8)                                  | 2          |
| Figure (6.9): Mises Stress Contour for Concrete Parts at Failure of (B1)16.         | 3          |
| Figure (6.10): Mises Stress Contour for Concrete Parts at Failure of (B2)           | 3          |
| Figure (6.11): Mises Stress Contour for Concrete Parts at Failure of (B3)           | 3          |
| Figure (6.12): Mises Stress Contour for Concrete Parts at Failure of (B4)           | 1          |
| Figure (6.13): Mises Stress Contour for Concrete Parts at Failure of (B5)           | 1          |
| Figure (6.14): Mises Stress Contour for Concrete Parts at Failure of (B6)164        | 1          |
| Figure (6.15): Mises Stress Contour for Concrete Parts at Failure of (B7)165        | 5          |
| Figure (6.16): Mises Stress Contour for Concrete Parts at Failure of (B8)           | 5          |