

Evaluation of Conventional, Immunological and Molecular Methods for the Diagnosis of Human Giardiasis

Thesis

Submitted in partial fulfillment of M.D. degree in Parasitology

By

Marwa Adel Elmallawnay

Assistant Lecturer of Parasitology, Faculty of Medicine, Cairo University

Supervised by

Dr. Azza Ibrahim El- Adaway

Professor and Head of Medical Parasitology Department
Faculty of Medicine

Cairo University

Dr. Hanaa Mohamed Ezaat Moussa

Assistant Professor of Medical Parasitology
Faculty of Medicine
Cairo University

Dr. Aisha Abbas El-Awady

Lecturer of Medical Parasitology
Faculty of Medicine
Cairo University

2012

Abstract

The present study was carried out on a total of 85 cases presenting with symptoms that might be suggestive of intestinal giardiasis. All stool samples were subjected to: a) microscopical examination using direct wet smear, concentration technique and Iron Hematoxylin (Fe-Hx) staining. b) Direct immnnofuorescent assay (DFA). c) DNA extraction followed by a PCR, using nested primers specific for *Giardia*.

Considering the nested PCR (nPCR) as the gold standard test, sensitivity of stool microscopy using the direct examination and concentration technique and that of stool microscopy using permanent Iron Hematoxylin stain was found to be 66.7% and 72.9% respectively with a statistically significant difference. While the sensitivity of DFA was 85.4% in detection of *Giardia* infection with a statistically significant difference compared with the nested PCR. No false positive results were recorded; therefore, specificity for all tests used was 100%.

Key Words:

Giardia, microscopy, stain, DFA, nested PCR.

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

My deep gratitude and appreciation, great thanks to Prof. Dr. Azza El-Adaway, Professor and Head of Parasitology Department, Faculty of Medicine, Cairo University, for her generous help, encouragement and continuous support throughout this work.

I am greatly honored to express my thanks and gratitude to Dr. **Hanaa** Moussa, Assistant Professor of Parasitology, Faculty of Medicine, Cairo University, for guidance, great help encouragement, constructive criticism and her creative support throughout the whole work up of this thesis.

I would like to express thanks and gratitude to Dr. Aisha El-Awady, Lecturer of Parasitology, Faculty of Medicine, Cairo University, for her valuable help and advice for me to accomplish this work.

I am very much indebted to Dr. **Omayma Mohamed Hassanin**, Associate consultant of Clinical Pathology, Molecular Biology Department, Medical Research Center, Faculty of Medicine, Ain-Shams University Hospitals, for her kind supervision, valuable advices and indispensable help throughout the molecular work of this thesis.

Last but not least, I would like to thank **my family** for their great help and support and every person who helped me during this work especially **my dear colleagues** in Parasitology Department, Faculty of Medicine, Cairo University, for their great help in this work.

LIST OF ABBREVIATIONS

Ab	antibody
Ag	antigen
bg	β- giardin
bp	Base pair
cDNAs	Complementary Deoxyribonucleic acid
CTC	5-cyano-2, 3-ditolyl tetrazolium chloride
CVID	common variable immunodeficiency
DFA	direct immunofluorescent assay
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dNTP	deoxynucleotide triphosphates
EB dye	Ethidium bromide
EDTA	ethylenediamminetetraacetate
Ef-1α	elongation factor-1alpha
EIA	Enzyme immunoassay
ELISA	enzyme-linked immunosorbent assay
EPCR	extended PCR
ER	endoplasmic reticulum
ES	Ecostain
ESV	encystation-specific secretory vesicles
Fe-Hx	Iron haematoxylin stain
FITC	Fluorescein isothiocyanate
G	Giardia lamblia
G+, P-	Positive Giardia, Negative Parasites

G-, P+	Negative Giardia, Positive Parasites
G-, P-	Positive Giardia, Negative Parasites
gdh	glutamate dehydrogenase
glorfc4	G. lamblia open reading frame c4
gp60	glycoprotein 60
GSA	Giardia stool antigen
HIV/AIDS	Human immunodeficiency virus/ cquired
	immunodeficiency syndrome
IFA	Immunofluorescence assays
IFN-γ	interferon-γ
IC	Immunochromatography
Ig	Immunoglobulin
IIF	Indirect immunofluroscence assay
IL	Interleukin
KCB	Chlorazol black E stain
LAMP	Loop-Mediated Isothermal Amplification
mAbs	Monoclonal antibodies
MIF	Merthiolate (thimerosal)-iodine-formalin
N	Nuclei
n	number
NO	Nitric oxide
n(PCR)	Nested PCR
O&P	Ova and Parasite
P	Parasite
pAbs	Polyclonal antibobodies
PBS	phosphate buffered saline

PCI	phenol/chloroform/isoamyl alcohol
PCR	Polymerase chain reaction
PCR-RFLP	PCR-restriction fragment length polymorphism
PVA	Polyvinyl alcohol
PVs	peripheral vacuoles
qPCR	Quantitative Polymerase Chain Reaction
RFLP	Restriction fragment length polymorphism
RNase	Ribonuclease
ROS	Reactive oxygen species
RT-PCR	Real-Time Polymerase Chain Reaction
SAF	Sodium acetate-acetic acid-formalin
ssu-rRNA	small subunit ribosomal RNA
TAE buffer	Tris-Acetate EDTA buffer
TNFα	Tumor necrosis factor α
tpi	Triose phosphate isomerase
Tris-HCl	Tris Hydrochloride Buffer
TRITC	Tetra methyl rhodamine isothiocyanate
UV	Ultra-violet
VSPs	Variant specific surface proteins
WHO	World health Organization
WT	Wheatley trichrome stain
XLA	X-linked agammaglobulinelia

List of Figures

Figure 1: Giardia intestinalis trophozoites in a Giemsa stained mucosal imprin
(x1000)
Figure 2: Schematic diagram showing the arrangements of cell structures in th
interphase Giardia
Figure 3: Giardia trophozoites observed by scanning electron microscopy (SEM)
Figure 4: Routine preparation for transmission electron microscopy of G. lambling
trophozoite
Figure 5: Cyst of <i>Giardia lamblia</i> stained with iodine
Figure 6: Life cycle of Giardia duodenalis
Figure 7: Mucosal surface of the small intestine of a gerbil infested with Giardia
protozoa
Figure 8: The ultrastructural morphology of a <i>Giardia</i>
Figure 9: High-power of small bowel mucosa showing <i>Giardia</i> trophozoites 4
Figure 10: Schematic diagram of direct and indirect labeled fluorescent antibod
techniques 5
Figure 11: Schematic diagram of PCR
Figure 12: Nested PCR.
Figure 13: photograph showing the used electric centrifuge apparatus
Figure 14: Iron Hematoxylin stain solutions
Figure 15: Cryptosporidium/Giardia Fecal DFA Kit
Figure 16: Fluorescent Microscope Olympus BH 2.
Figure 17: photograph showing patient's stool specimen spreaded to the slide are
using the transfer loop. 9
Figure 18: photograph showing three tested samples after addition of the conjugat
and counter stain before incubation in a light-protected area

Figure 19: photograph showing Microcentrifuge used for DNA extraction 101
Figure 20: photograph showing Hot plate used for DNA extraction
Figure 21: QIAamp DNA Stool Mini Kit
Figure 22: The supernatant and the InhibitEX Tablet after being vortexed togther
until the tablet was completely suspended
Figure 23: The sample after been centrifuged to pellet stool particles and inhibitors
bound to InhibitEX matrix. 103
Figure 24: photograph showing thermal cycler used in DNA amplification 105
Figure 25: photograph showing Ultra-violet transillumination lamp
Figure 26: photograph showing gel electrophoresis apparatus used for separation of
DNA fragments
Figure 27: Sex distribution among different patient groups according to
microscopic fecal examination
Figure 28: Age distribution among group I patients (G+, P-) according to
microscopic fecal examination (n=35)
Figure 29: Age distribution among group II patients (G-, P+) according to
microscopic fecal examination (n=27)
Figure 30: Age distribution among group III (G-P-) according to microscopic fecal
examination (n=23).
Figure 31: Clinical presentations of all cases (n=85)
Figure 32: Clinical presentations in group I (G+, P-) (n=35)
Figure 33: Clinical presentations in group II (G-, P+) (n=27)
Figure 34: Clinical presentations in group III (G-, P-) (n=23)
Figure 35: Giardia trophozoite stained with iodine as detected in stool sample
(x400)
Figure 36: Giardia cyst stained with iodine as detected in stool sample (x400) 123

Figure 37: Giardia trophozoite stained with Iron Hematoxylin stain as detected in
stool sample (x1000)
Figure 38: Giardia cyst stained with Iron Hematoxylin stain as detected in stool
sample (x1000). 124
Figure 39: Parasites detected in fecal samples of group II (G-, P+) using
parasitological examination
Figure 40: Giardia cysts as detected by IFA in stool sample (x400)
Figure 41: <i>Giardia</i> positive cases detected by IFA in group I
Figure 42: An ethidium bromide stained agarose electrophoresis showing the
extended PCR product of Giardia lamblia
Figure 43: An ethidium bromide stained agarose electrophoresis showing the
nested PCR product of <i>Giardia lamblia</i>
Figure 44: An ethidium bromide stained agarose electrophoresis showing the
extended and nested PCR product respectively
Figure 45: Giardia positive cases detected by Nested PCR in group I
Figure 46: Positivity of giardiasis among the study population (n=85) as detected
by parasitological, immunological and molecular methods
Figure 47: Sex distribution among <i>Giardia</i> positive cases using PCR
Figure 48: Age distribution among the <i>Giardia</i> positive cases using PCR 142
Figure 49: Clinical presentation in <i>Giardia</i> positive cases (n=48) using PCR 143

List of Tables

Table 1: Giardia duodenalis assemblages and their distribution in mammalian 6
Table 2: List of the targets, type of assay and main use of amplification-based
techniques for Cryptosporidium and Giardia
Table 3: Sex distribution among different patient groups according to microscopic
fecal examination. 113
Table 4: Age distribution among group I patients (G+, P-) according to
microscopic fecal examination
Table 5: Age distribution among group II patients (G-, P+) according to
microscopic fecal examination
Table 6: Age distribution among group III (G-P-) according to microscopic fecal
examination
Table 7: Clinical presentations among different patient groups
Table 8: Parasites detected in fecal samples of group II (G-, P+) using
parasitological examination
Table 9: IFA results showing <i>Giardia</i> positive and <i>Giardia</i> negative cases among
different groups of stool samples according to parasitological examination 128
Table 10: Nested PCR results showing Giardia positive and Giardia negative cases
Table 11: Demographic data, clinical data and results of conventional stool
examination, IFA and Nested PCR assays of group I (n=35)
Table 12: Demographic data, clinical data and results of conventional stool
examination, IFA and Nested PCR assays of group II (n=27)
Table 13: Demographic data, clinical data and results of conventional stool
examination, IFA and Nested PCR assays of group III (n=23)
Table 14: Sex distribution among <i>Giardia</i> positive and negative cases using PCR.

Table 15: Age distribution among <i>Giardia</i> positive and negative cases using PCR.
Table 16: Results of Giardia detection using the direct and concentration technique
144
Table 17: Results of Giardia detection using the permanent Iron Hematoxylin stain
Table 18: Results of <i>Giardia</i> detection using DFA
Table 19: Results for <i>Giardia</i> detection using the permanent Iron Hematoxylin
stain

Table of Contents

Introduction	1
Aim of Work	3
Review of literature	4
Giardia classification	4
Giardia species	5
Morphology	8
Life cycle	
Pathophysiology	
Clinical features	20
Epidemiology of Giardiasis	22
Immunology	25
Diagnosis of Giardiasis	34
Patients and Methods	74
Results	112
Discussion	149
Conclusion	
Recommendations	187
Summary	189
References	192
Arabic Summary	227

Introduction

Giardia intestinalis (syn. G. duodenalis, G. lamblia) is flagellated, protozoan parasite and a leading cause of a human diarrheal disease worldwide (Asher et al., 2012). The prevalence of giardiasis is 2 to 5% in developed countries and 20 to 30% in developing countries (Júlio et al., 2012).

Infection is transmitted by the ingestion of cysts, which are the parasitic stages that resist chlorination and can remain viable for several weeks (Nguyen et al., 2012). Most infected people remain asymptomatic, which contributes to the spread of the disease. In some cases, especially in children, infection can lead to a wide range of symptoms, including abdominal discomfort and watery diarrhea; in severe cases, malnutrition, malabsorption and disruption of the weight curve may be observed (Escobedo and Cimerman, 2007).

Traditional diagnostic methods are fecal and include smears must concentration procedures along with specific staining techniques for proper microscopic detection and identification of the parasite. However, these methods are laborious, time consuming and require specialized trained addition, examination personnel. In microscopic of consecutive samples on different days is required to achieve sensitivity up to 85% (Schuurman et al., 2007; Chakarova, 2010 and Goñi et al., 2012).

In recent years, antigen detection immunoassays, such as enzyme immunoassays (EIAs) and immunochromatography (IC) and immunofluorescence assays (IFA) to detect *Giardia* have been developed. IFA have the advantage of improving the sensitivity for detection of

giardiasis however, they are expensive and are not routinely applied in all laboratories (Chavez, 2008).

Molecular techniques to detect *Giardia* are now available for research purposes and several studies recommended their use to diagnose giardiasis (Goñi *et al.*, 2012).

Aim of Work

The aim of the present work was to evaluate different laboratory investigative methods for diagnosis of giardiasis in human cases.

Objectives:

- 1- Evaluate the usefulness of different diagnostic techniques; Conventional microscopy, Immunodiagnosis by Direct immnnofuorescent assay (DFA) and Molecular diagnosis using the nested PCR for identification of giardiasis.
- 2- Compare the sensitivity, specificity, cost and feasibility of each method.