

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

EVA UATION OF LIVER FIBROSIS MARKERS IN CHRONIC LIVER DISEASES

Thesis Submitted By

EBADA MOHAMAD SAID

M.B.B.Ch, M.Sc

For The Partial Fulfillment of the
M.D. Degree in Tropical Medicine

EIN

Supervised By

PROF. AL-METWALLY ZAKARIA ABD EL-BASET

Prof. of Hepatology, Gastroenterology and Infectious diseases

Banha Faculty of Medicine

PROF. AMANY HELMY LASHIN

Prof. of Hepatology, Gastroenterology and Infectious diseases

Banha Faculty of Medicine

PROF. AZZA AHMAD ABO-SENNA

Assist. Prof. of Clinical Pathology Banha Faculty of Medicine

DR. HOSAM AMIN BIOMY

Lecturer of Hepatology, Gastroenterology and Infectious diseases

Banha Faculty of Medicine

BANHA FACULTY OF MEDICNE UNIVERSITY OF BANHA 2006

1

بسم الله الرحمن الرحيم

﴿ وَانَّقُوا اللَّهَ وَيُعَلِّمُكُمُ اللَّهُ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ ﴾

صدق الله العظيم (البقرة: الآية ٢٨٢)

قال الله تعالى في كتابه العزيز:

بسم الله الرحمن الرحيم

إِنَّمَا يَخْشَى اللَّهَ مِنْ عِبَادِهِ الْعُلَمَاء)	(فاطر :۲۸)
وَلا يُحِيطُونَ بِشَيْءٍ مِنْ عِلْمِهِ إِلَّا بِمَا شَاءَ)	(البقرة:٢٥٥)
وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ)	(يوسف:٢٧)
وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلاً)	(الاسراء:٨٥)
وَقُلُ رَبِّ زِدْنِي عِنْماً)	(طه: ۱۱۶)
قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)	(البقرة:٣٢)
يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَات)	(المجادلة: ١١)

ABSTRACT

Liver fibrosis is a dynamic bi-directional process involving phases of progression and regression. Its diagnosis is dependent on histopathological examination of biopsy specimens. Non invasive serum markers of liver fibrosis would be of great clinical benefit as they would allow repeated assessment, with avoidance of the invasiveness of liver biopsy with its complications. This study was carried out on 50 patients (43males and 7 females) with chronic liver disease from the Hepatology ,Gastroenterology and Infectious diseases department of Banha University Hospitals and 10 healthy subjects as a control group. For both groups; estimation of serum matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and haptoglobin was done. Scoring of the age-platelet index (API) and AST to platelet ratio index (APRI) was also done for the patients group, and finally, liver biopsy with histopathological examination for the necroinflammatory grade (A) and fibrosis stage (F) applying the METAVIR scoring system.

Results showed that the mean serum levels of MMP-9 were significantly higher in patients than in controls (p<0.05) and showed a significant negative correlation with METAVIR grade (p<0.05). By using ROC curves to assess MMP-9 for discrimination of significant fibrosis ($F \ge 2$) and cirrhosis (F4), the AUROC were 0.67 ± 0.17 and 0.69 ± 0.18 respectively. The mean values of serum TIMP-1 were significantly higher in patients than in controls (p<0.05), with non significant positive correlation with fibrosis progression (p>0.05), while it showed a significant increase (p<0.05) with METAVIR grades (A). AUROC for $F \ge 2$ and F4 were 0.58 ± 0.2 and 0.53 ± 0.19 respectively, while for $A \ge 2$, it was 0.67 ± 0.17 . Haptoglobin levels were non significantly lower in patients than in controls (p>0.05) but showed a significant negative correlation with fibrosis progression (r=-0.4, p<0.05) and AUROC for $F \ge 2$ and F4, were 0.75 ± 0.17 and 0.78 ± 0.15 respectively.

To conclude, MMP-9 was a fair marker of fibrosis as well as necroinflammatory activity, and TIMP-1 was a sensitive and to a lesser extent specific marker of advanced liver disease, discriminating necroinflammatory activity rather than fibrosis stage. On the other hand, haptoglobin, API, and PT were the most sensitive predictors of significant fibrosis, while haptoglobin and API were the most sensitive predictors of cirrhosis. Finally, these serum assays, although promising, are still in need of being refined with further prospective studies.

ACKNOWLEDGEMENT

THANKS TO ALLAH

I would like to express my deepest gratitude and heart felt thanks to my **PROF.** AL-METWALLY ZAKARIA A. BASET, Professor of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University, for his valuable help, kind advice and close supervision during all steps of this work.

Words fail to express my deep appreciation to **PROF. AMANY HELMY LASHIN**, Professor of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University, who spared no time or effort providing me with constructive guidance which was a paramount axis in the initiation and progression of this work.

I would like to extend my deep thanks to **PROF.** AZZA AHMAD ABO-SENNA, Assistant Prof. of Clinical Pathology, Banha Faculty of Medicine, Banha University, who generously aided and directed me. Many thanks, for her encouragement, supervision, cooperation and helpful suggestions.

I am greatly indebted to *DR. HOSAM AMIN BIOMY*, Lecturer of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University, for his cooperation, encouragement, and continuous support. He kindly supervised and revised all the details of this work.

Also I am grateful to **PROF. ALY AL-HINDAWY**, Professor of Pathology, Kasr El-Aini Faculty of Medicine, Cairo University who offered me much of his unlimited experience in histopathology.

I am grateful to **DR. ENTESAR HUSIEN AL-SHARKAWY**, Lecturer of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University, for her help in patient selection.

Many thanks to **DR. MOHAMMAD A-AZIZ**, Lecturer of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University, for his continuous support and advice.

I would like to thank **DR. ADEL ZAKY EL-SAIDY**, Lecturer of Pathology, Banha Faculty of Medicine, Banha University, for his help.

Finally, I would like to express my thanks to all the staff, residents, house officers, secretary and nurses of the department of Hepatology, Gastroenterology and Infectious Diseases, Banha Faculty of Medicine, Banha University for their encouragement, help and support allthrough this work.

Contents

ist of Abbreviations.	
ist of Tables.	
ist of Figures.	
ntroduction.	1
im of the work.	3
eview of Literature.	4
Anatomy and histology of the liver.	4
The extracellular matrix (ECM).	13
Biopsy of the liver.	24
Histopathological interpretation of liver biopsy in chronic	
hepatitis.	37
Characteristic histopathological features of some common	
chronic liver diseases.	48
Hepatic fibrosis and cirrhosis.	53
Schistosomal hepatic fibrosis.	69
Prospects for antifibrotic therapy.	72
Serum markers of liver fibrosis.	79
Haptoglobin.	86
Matrix metalloproteinases and their tissue inhibitors.	91
Matrix metalloproteinase-9.	94
Tissue inhibitor of metalloproteinase-1.	98
Subjects and Methods.	101
Aaster Sheet	
Results.	121
Discussion.	172
ummary.	189
Conclusions.	193
Recommendations.	194
References.	195
Arabic Summary.	

LIST OF ABBREVIATIONS

API Ago		GS	Glutamine synthetase.
	e platelet index	H & E	Haematoxylin and eosin.
APRI AS	T to platelet ratio index	HA	Hyaluronic acid.
AST Asp	partate transaminase.	HAI	Histological activity index.
AT Act	ti Test.	HBcAg	HB core antigen.
AUROC Are	ea under ROC curve.	HBsAg	HB surface antigen.
bFGF Bas	sic fibroblast growth factor.	HBV	Hepatitis B virus.
Ca ⁺⁺ Cal	cium ion.	HCC	Hepatocellular carcinoma.
CAH Chi	ronic active hepatitis.	HCV	Hepatitis C virus.
CLD Chi	ronic liver disease.	HGF	Hepatocyte growth factor.
CPH Chr	ronic persistent hepatitis.	HSC	Hepatic stellate cells.
CT Cor	mputerized tomography.	hTIMP-1	Human tissue inhibitor of
CTGF Cor	nnective tissue growth		metalloproteinase-1.
fact	tor.	ICAM-1	Intracellular adhesion
ECM Ext	racellular matrix.		molecule-1.
EFF Eff	icacy.	IHA	Immune haemagglutination.
EGF Epi	dermal growth factor.	IL	Interleukin.
ELISA Enz	zyme linked	INF-γ	Interferon-γ.
	nunosorbant assay.	KC	Kupffer cells.
ERCP Enc	loscopic retrograde.	KD Kilo Dalton.	
cho	langio-pancreatography.	LN	lobular necrosis.
ET-1 End	lothelin-1.	LRP	Lipoprotein receptor-related
ET-AR End	lothelin A receptor.		protein.
FAK Foc	al adhesion kinase.	M.T-	Membrane-type-matrix
FN Fals	se negative.	MMP	metalloproteinase.
FP Fals	se positive.	MCP-1	Monocyte chemotactic
FT Fib	ro Test.		protein-1.
GAGs Gly	cosaminoglycans.	METAVIR (A)	Necroinflammatory grade.
GGT Gar	mma-glutamyl	METAVIR	Fibrosis stage.
tran	nspeptidase.	(F)	

3.57	26 61 11
MF	Myofibroblast.
MIP-1B	Macrophage inflammatory
1411 - 119	protein-1B.
MMP	Matrix metallo-proteinases.
MRC	Magnetic resonance-
MIRC	cholangiography.
Na ⁺	Sodium ion.
NAFLDs	Non alcoholic fatty liver diseases.
NASH	Non alcoholic steatohepatitis.
OAT	Ornithine aminotransferase.
ORFs	Open reading frames.
P	Probability of error.
P	Negative predictive value.
\mathbf{P}^{+}	Positive predictive value.
PBC	Primary biliary cirrhosis.
PCR	Polymerase chain reaction.
PDG F	Platelet-derived growth factor.
PIII NP	Procollagen type III amino-
	terminal peptide.
PMN	Piecemeal necrosis.
PSC	Primary sclerosing cholangitis.
r	Correlation coefficient.
RIBA	Recombinant immunonblot assay.
RID	Radial immune diffusion assay.
RNA	Ribonucleic acid.
ROC	Receiver operator
	characteristic curve.
ROS	Reactive oxygen species.
RT-PCR	Reverse transcription
KINCK	polymerase chain reaction.

SD	Standard deviation.
SN	Sensitivity.
SP	Specificity.
SPARC	Secreted protein acidic rich in
STARC	cysteine.
t	Student test.
TN	True negative.
TH0	T helper 0.
TH2	T helper 2.
TP	True positive.
TGF	Transforming growth factor.
TIMP	Tissue inhibitors of matrix
A A I I VAR	metalloproteinases.
TNF	Tumour necrosis factor.
VLA	Very late antigen.
$\overline{\overline{X}}$	Arithmetic Mean.
X^2	Chi-square test.
YKL-40	The ulycoprotein chondrex.
Z	Wilcoxon rank sum test.
α	Alpha.
β	Beta.
γ	Gamma.

LIST OF TABLES

Table No.	Title	Page
TABLES OF REVIEW OF LITERATURI		
_ 1	The principal indications for Liver Biopsy.	25
_2	Absolute and relative contraindications to Liver Biopsy.	26
3	HAI for Numerical Scoring of Liver Biopsy Specimens.	40
4	Modified HAI grading: necroinflammatory scores.	42
5	Modified staging: architectural changes, fibrosis and cirrhosis.	43
6	Example of conventional verbal and semi-numerical liver biopsy report.	45
7	Staging hepatic fibrosis: Comparing most often used scoring systems.	47

TABLES OF SUBJECTS AND METHODS		
1	Reagents provided for MMP-9 determination.	104
2	Reagents provided for TIMP-1 determination.	108
3	Dilution of hTIMP-1 Standard.	109

	TABLES OF RESULTS	_
1	Comparison of liver profile tests between the studied groups.	123
2	Comparison of the mean values of serum MMP-9, TIMP-1, and haptoglobin in the studied groups.	125
3	Comparison of the mean values of serum MMP-9, TIMP-1, and Haptoglobin in HCV-Ab-positive and-negative cases.	127
4	Distribution of cases according to the histopathological results of the studied liver biopsies.	128
5	Comparison of the mean values of routine liver profile tests and other assessed serum markers in different METAVIR fibrosis stages (F).	129
6	Comparison of the mean values of routine liver profile tests and other assessed serum markers in different METAVIR activity grades (A).	130
7	Correlation coefficient (r) between MMP-9 and liver profile tests.	131
8	Correlation coefficient (r) between TIMP-1 and liver profile tests.	131
9	Correlation coefficient (r) between Haptoglobin and liver profile tests.	131
10	Correlation coefficient (r) between METAVIR Stage (F) and assessed variables.	132
11	Correlation coefficient (r) between METAVIR grade (A) and assessed variables.	132
12	Stepwise multiregression analysis of various predictors of significant fibrosis (METAVIR stages ≥ F2).	133

Table No.	Title	Page
13	Stepwise multiregression analysis of various predictors of established cirrhosis (METAVIR stage F4).	133
14	Sensitivity and 1- specificity of platelet count cut off values for prediction of significant fibrosis $(F \ge 2)$.	135
15	Sensitivity and 1- specificity of platelet count cut off values for prediction of cirrhosis (F4).	136
16	Sensitivity and 1-specificity of platelet count cut off values for prediction of moderate to severe activity $(A \ge 2)$.	137
17	Sensitivity and 1- specificity of API scores for prediction of significant	139
18	fibrosis ($F \ge 2$). Sensitivity and 1- specificity of API scores for prediction of cirrhosis	140
19	Sensitivity and 1- specificity of API scores for prediction of moderate to	141
20	severe activity $(A \ge 2)$. Sensitivity and 1- specificity of PT values for prediction of significant fibrosis $(F \ge 2)$.	143
21	Sensitivity and 1- specificity of PT values for prediction of cirrhosis	144
22	(F4). Sensitivity and 1- specificity of PT values for prediction of moderate to	145
23	severe activity $(A \ge 2)$. Sensitivity and 1- specificity of APRI scores for prediction of	147
24	significant fibrosis ($F \ge 2$). Sensitivity and 1- specificity of APRI scores for prediction of cirrhosis	148
25	(F4). Sensitivity and 1- specificity of APRI scores for prediction of moderate	149
26	to severe activity $(A \ge 2)$. Sensitivity and 1- specificity of haptoglobin cut off values for prediction	151
27	of significant fibrosis $(F \ge 2)$. Sensitivity and 1- specificity of haptoglobin cut off values for prediction	152
28	of cirrhosis (F4). Sensitivity and 1- specificity of haptoglobin cut off values for prediction of	153
29	moderate to severe activity $(A \ge 2)$. Sensitivity and 1- specificity of MMP-9 cut off values for prediction of	155
30	significant fibrosis ($F \ge 2$). Sensitivity and 1- specificity of MMP-9 cut off values for prediction of	156
31	cirrhosis (F4). Sensitivity and 1- specificity of MMP-9 cut off values for prediction of	157
32	moderate to severe activity $(A \ge 2)$. Sensitivity and 1- specificity of TIMP-1 cut off values for prediction of	159
33	significant fibrosis ($F \ge 2$). Sensitivity and 1- specificity of TIMP-1 cut off values for prediction of	160
34	cirrhosis (F4). Sensitivity and 1- specificity of TIMP-1 cut off values for prediction of	
<u> </u>	moderate to severe activity $(A \ge 2)$.	<u></u>