

IMPACT ASSESSMENT OF THE PROPOSED WATER RESOURCES DEVELOPMENT PROJECTS IN THE BLUE NILE BASIN ON NILE FLOW AT ASWAN

By

Osama Mahrous Mossad Tarabih

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Irrigation and Hydraulics Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

IMPACT ASSESSMENT OF THE PROPOSED WATER RESOURCES DEVELOPMENT PROJECTS IN THE BLUE NILE BASIN ON NILE FLOW AT ASWAN

By Osama Mahrous Mossad Tarabih

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Irrigation and Hydraulics Engineering

Under the Supervision of

Prof. Ahmad Wagdy Abdeldayem	Dr. Mohammed ElSayed Abou El-Haggag	
Professor of Hydrology	Assistant Professor	
Irrigation and Hydraulics Department	Irrigation and Hydraulics Department	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	
Dr. Hany Gomaa	Ahmed ElSayed Radwan	
Assi	stant Professor	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

IMPACT ASSESSMENT OF THE PROPOSED WATER RESOURCES DEVELOPMENT PROJECTS IN THE BLUE NILE BASIN ON NILE FLOW AT ASWAN

By Osama Mahrous Mossad Tarabih

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Irrigation and Hydraulics Engineering

Approved by the Examining Committee:

Prof. Ahmad Wagdy Abdeldayem, Thesis Main Advisor. Professor of Hydrology, Faculty of Engineering, Cairo University.

Prof. Dr. Khaled Hussein Hamed,

Internal Examiner. Prof. of Hydraulics, Faculty of Engineering, Cairo University.

Prof. Dr. Maha Mohsen Tawfik,

External Examiner. Vice President of the National Water Research Centre, Ministry of Water Resources.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Osama Mahrous Mossad Tarabih

Date of Birth: 23/11/1987 **Nationality:** Egyptian

E-mail: osamatarabih@eng.cu.edu.eg

Phone: 002-01022556004

Address: Hadayek Al-Ahram, Giza, Egypt

Registration Date: 01/10/2009

Awarding Date: 2016

Degree: Master of Science

Department: Irrigation and Hydraulics Engineering

Supervisors:

Prof. Ahmad Wagdy Abdeldayem

Dr. Mohammed ElSayed Abou El-Haggag Dr. Hany Gomaa Ahmed ElSayed Radwan

Examiners:

Prof. Ahmad Wagdy Abdeldayem Prof. Khaled Hussein Hamed

Prof. Maha Mohsen Tawfik (Vice President of the National Water Research Centre, Ministry of Water

Resources)

Title of Thesis:

Impact Assessment of the proposed water resources development projects in the Blue Nile Basin on Nile flow at Aswan

Kev Words:

Blue Nile, Eastern Nile, GERD, High Aswan Dam

Summary:

Nile River is considered the primary renewable source of water to Egypt. Nile Basin could be divided into two main sub-basins. Eastern Nile sub-basin is the major one that contributes with about four fifth of water inflows that arrives at Aswan. Blue Nile is a major part of the Eastern Nile sub-basin that lies in Ethiopia and Sudan. Blue Nile is a target for many water resources development projects such as hydropower projects and irrigated agriculture. These projects may have negative impacts on downstream countries. This study introduces a hydrological model for Blue Nile to generate river system flows, which is then coupled with river and reservoir simulation model to simulate current flow conditions in addition to simulate different development scenarios in order to assess their impacts on High Aswan Dam.

Table of Contents

ACKNOWL	EDGMENTS	I
DEDICATIO	ON	II
CHAPTER 1	: INTRODUCTION	1
1.1.	BACKGROUND	1
1.2.	MAIN BASINS OF THE NILE RIVER	3
1.2.1.	THE EQUATORIAL LAKES PLATEAU	4
1.2.2.	BAHR EL-GHAZAL BASIN	5
1.2.3.	THE EASTERN NILE BASIN	6
1.3.	STATEMENT OF THE PROBLEM	9
1.4.	OBJECTIVES OF THE STUDY	9
1.5.	THESIS STRUCTURE	9
CHAPTER 2	2 : LITERATURE REVIEW	11
2.1.	INTRODUCTION	11
2.2.	HYDROLOGICAL MODELS	11
2.2.1.	STOCHASTIC MODELS	11
2.2.2.	PHYSICAL-BASED MODELS	11
2.2.2.1.	DISTRIBUTED MODEL	12
2.2.2.2.	FULLY DISTRIBUTED MODEL	12
2.2.2.3.	SEMI DISTRIBUTED MODEL	12
2.2.3.	COMPARISON OF PHYSICAL BASED MODELS	12
2.2.4.	RATIONALE USE OF SWAT MODEL	12
2.2.5.	SWAT MODEL DESCRIPTION	14
2.2.6.	RESERVOIR AND RIVER MANAGEMENT MODELING	15
2.2.7.	RATIONALE USE OF HEC-RESSIM MODEL	17
2.2.8.	HEC-RESSIM MODEL DESCRIPTION	17
2.3.	STUDY AREA	18
2.3.1.	LOCATION	18
2.3.2.	TOPOGRAPHY AND LAND USE	21

2.3.3.	CLIMATE	21
2.3.3.1.	RAINFALL	22
2.3.3.2.	TEMPERATURE	22
2.3.4.	HYDROLOGY	22
2.4.	PREVIOUS STUDIES	28
CHAPTER 3:	METHODOLOGY	42
3.1.	INTRODUCTION	42
3.2.	RESEARCH METHODOLOGY	42
3.3.	ARCSWAT MODEL	43
3.3.1.	LAND PHASE OF THE HYDROLOGIC CYCLE	44
3.3.1.1.	CLIMATE	44
3.3.1.2.	HYDROLOGY	44
3.3.2.	ROUTING PHASE OF THE HYDROLOGIC CYCLE	46
3.3.2.1.	ROUTING IN THE RESERVOIR	46
3.3.2.2.	ROUTING IN THE MAIN CHANNEL OR REACH	46
3.3.3.	SURFACE RUNOFF	46
3.3.3.1.	SCS CURVE NUMBER PROCEDURE	46
3.3.3.1.1.	SCS CURVE NUMBER	48
3.3.3.1.2.	SOIL HYDROLOGIC GROUPS	48
3.3.3.1.3.	ANTECEDENT SOIL MOISTURE CONDITION	48
3.3.3.1.4.	RETENTION PARAMETER	49
3.3.4.	EVAPOTRANSPIRATION	50
3.3.4.1.	CANOPY STORAGE	50
3.3.4.2.	POTENTIAL EVAPOTRANSPIRATION	52
3.3.5.	ACTUAL EVAPOTRANSPIRATION	55
3.3.5.1.	EVAPORATION OF INTERCEPTED RAINFALL	55
3.3.6.	SOIL WATER	56
3.3.6.1.	SOIL STRUCTURE	56
3.3.6.2.	PERCOLATION	58
3.3.7.	GROUNDWATER	59
3.3.7.1.	GROUNDWATER SYSTEMS	59
3.3.7.2.	SHALLOW AQUIFER	61

3.3.7.2.1.	RECHARGE	62
3.3.7.2.2. DEEP AQUIFF	PARTITIONING OF RECHARGE BETWEEN SHALLOVER	
3.3.7.2.3.	GROUNDWATER/BASE FLOW	63
3.3.7.2.4.	REVAP	65
3.3.7.3.	DEEP AQUIFER	66
3.4.	HEC-RESSIM MODEL	66
3.4.1.	WATERSHED SETUP MODULE	67
3.4.2.	RESERVOIR NETWORK MODULE	68
3.4.3.	SIMULATION MODULE	68
CHAPTER 4:	MODEL SETUP	69
4.1.	INTRODUCTION	69
4.2.	DATA COLLECTION AND COMPILATION	69
4.2.1.	TERRAIN DATA (DIGITAL ELEVATION MODEL DAT	ΓA) 69
4.2.1.1.	SHUTTLE RADAR TOPOGRAPHY MISSION:	70
4.2.1.2.	VOID-FILLING:	70
4.2.2.	RIVER NETWORK (STREAM LINES)	71
4.2.3.	LAND COVER DATA	71
4.2.3.1.	LEGEND DESCRIPTION	72
4.2.4.	SOIL TYPE DATA	72
4.2.5.	METEOROLOGICAL DATA	73
4.2.6.	OBSERVED STREAM FLOW DATA	74
4.2.7.	DEVELOPMENT PROJECTS DATA	80
4.2.7.1.	RESERVOIRS DATA	80
4.2.7.2.	IRRIGATION DATA	84
4.2.7.2.1.	CURRENT SITUATION	84
4.2.7.2.2.	POTENTIAL IRRIGATION	85
4.3.	BN-SWAT MODEL SETUP	87
4.3.1.	WATERSHED DELINEATION	87
4.3.2.	HRUS DEFINITION	88
4.3.3.	WEATHER DATA DEFINITION	90
4.3.4.	RESERVOIRS DATA DEFINITION	90

4.3.5.	SIMULATION	91
4.4.	HEC-RESSIM MODEL SETUP	91
4.4.1.	WATERSHED SETUP	91
4.4.2.	RESERVOIR NETWORK	94
4.4.2.1.	ADDING ROUTING REACHES	94
4.4.2.2.	ADDING LOCAL FLOW	95
4.4.2.3.	REACH ROUTING METHOD	95
4.4.2.4.	DEFINING RESERVOIRS DATA	95
4.4.3.	SIMULATION	100
CHAPTER 5 :	CALIBRATION, VALIDATION, AND VERIFICATION	101
5.1.	INTRODUCTION	101
5.2.	BN-SWAT MODEL SENSITIVITY ANALYSIS	101
5.2.1.	SENSITIVITY ANALYSIS PROCEDURE	102
5.3.	BN-SWAT MODEL CALIBRATION AND VALIDATION	102
5.3.1.	SWAT-CUP	103
5.3.2.	CALIBRATION AND VALIDATION PROCEDURES	104
5.4.	BN-HEC-RESSIM MODEL VERIFICATION	109
CHAPTER 6 :	SCENARIOS, RESULTS AND DISCUSSION	115
6.1.	INTRODUCTION	115
6.2.	BASE LINE SIMULATION	115
6.2.1.	BASE LINE SIMULATION RESULTS	115
6.3.	DEVELOPMENT SCENARIOS	118
6.3.1.	FILLING SCENARIOS	118
6.3.2.	HYDROPOWER SCENARIOS	124
6.3.2.1.	SCENARIO 01	125
6.3.2.2.	SCENARIO 02	127
6.3.2.3.	SCENARIO 03	130
6.3.2.4.	SCENARIO 04	132
6.3.2.5.	SCENARIO 05	135
6.3.3.	HYDROPOWER + IRRIGATION SCENARIOS	138
6.3.3.1.	SCENARIO 06	138
6.3.3.2.	SCENARIO 07	140

CHAPTER 7 : C	ONCLUSIONS AND RECOMMENDATIONS	144
7.1.	INTRODUCTION	144
7.2.	SUMMARY	144
7.3.	CONCLUSIONS	145
7.4.	RECOMMENDATIONS	146
REFERENCES.		
APPENDICES		

List of Tables

Table 1-1: Distribution of the Nile Basin area among its countries (Shahin, 1985)	2
Table 1-2: Discharge Variations at different locations on the Nile River (FAO, 1997)	7)2
Table 1-3: Average annual discharge at different locations in the Sudd region (FAC	
1997)	
Table 1-4: Available Water Resources for Egypt (MWRI, 2013)	
Table 2-1: Physical based hydrologic models	
Table 2-2: Mean monthly discharge of the Abay River at the outlet to Lake Tana (c	
(ENTRO, 2006a)	
Table 2-3: Mean monthly discharge of the Abay River at the Ethiopian/Sudan bord	
(cms) (ENTRO, 2006a)	25
Table 2-4: Area and average gross runoff depth of the sixteen main drainage basin	units
of the Abay river basin (rank order by gross runoff depth) (ENTRO, 2006a)	
Table 2-5: Combined exogenous and endogenous scenarios for EN SWAT	
Table 4-1: Void-filled digital elevation data	
Table 4-2: HydroSHEDS river network	
Table 4-3: Available flow data in the Blue Nile Basin	
Table 4-4: Available flow data at the MNB	
Table 4-5: Existing Reservoirs in BNB	
Table 4-6: Existing Dams in MNB	
Table 4-7: Proposed Dams in BNB	
Table 4-8: Existing irrigation schems in the BNB in Sudan (Ahmed, 2006)	
Table 4-9: Major planned irrigation development in the Blue Nile Basin	
Table 4-10: Existing Reservoirs assigned to their subbasins	
Table 4-11: Values of K and X used for Muskingum method	
Table 5-1: Sensitivity analysis output	
Table 5-2: General performance ratings for Nash–Sutcliffe Efficiency (NSE), and	
coefficient of determination (R2) for a monthly time step (Moriasi et al., 2007)	104
Table 5-3: The fitted values for the calibrated parameters at Ed-Deim and Khartour	
stations	
Table 5-4: Model performance statistics for calibration and validation periods for the	ne
Blue Nile Basin.	
Table 5-5: Statistical measurements at the three gauge stations	
Table 5-6: Statistical measurements at HAD pool elevation	
Table 6-1: Current project characteristics	
Table 6-2: Reductions in flow and HAD pool elevation and HP due to Base Case	
Scenario	118
Table 6-3: Different proposed FSLs for GERD	118
Table 6-4: Reductions at HAD for the various filling scenarios of the GERD	
Table 6-5: Proposed Dams specifications	
Table 6-6: Hydropower Scenarios description	
Table 6-7: Proposed irrigation projects on BNB	
Table 6-8: Reductions at HAD due to the development scenarios	

List of Figures

Figure 1-1: Nile River Basin (Wikipedia.com)	1
Figure 1-2: The Main Basins of the Nile Basin	
Figure 1-3: the Equatorial Lakes Plateau	5
Figure 1-4: Location map of the Eastern Nile Basin (A. Hassan, 2012)	7
Figure 1-5: The Blue Nile Basin (ENTRO, 2006a)	8
Figure 2-1: Watershed Simulation with ArcGIS-SWAT Model	.15
Figure 2-2: Schematic of a River System as Viewed From a Modeling Perspective	
Figure 2-3 Location Map of the Blue Nile Sub basin (ENTRO, 2006a)	
Figure 2-4 map of the Blue Nile and Atbara Basins to be replaced	
Figure 2-5: Land use in the Blue Nile Sub basin (Source)	
Figure 2-6: Abbay-Blue Nile: Mean Annual Rainfall (mm/yr) (ENTRO, 2006a)	
Figure 2-7: Abbay-Blue Nile Sub-basin: Mean Annual Temperature (degrees C)	
(ENTRO, 2006a)	24
Figure 2-8: Abbay-Blue Nile Sub-Basin: Mean Annual Runoff (mm/yr) (ENTRO,	
2006a)	.26
Figure 2-9: Abbay-Blue Nile Sub-basin: Mean monthly discharge at key sites (MCM	
(ENTRO, 2006a)	
Figure 2-10 Sudan – Blue Nile Sub-basin: Blue Nile Hydrograph 1920-2001 (MCM)	
(ENTRO, 2006a)	
Figure 2-11: HAD pool elevation after scenarios 01 and 02	
Figure 2-12: HAD inflow after scenarios 01 and 02	
Figure 2-13: Mean monthly inflow to Sennar	
Figure 2-14: Mean monthly inflow to Roseires	
Figure 2-15: Mean monthly inflow to HAD	
Figure 2-16: Mean annual flow losses from the Blue Nile	
Figure 2-17: Scenarios Results for Merowe Dam pool elevation	
Figure 2-18: Inflows to HAD for different scenarios	
Figure 2-19: HAD pool elevation for the different scenarios	
Figure 2-20: Total power generation by facilities in Egypt	
Figure 2-21: Annual Energy Generation by facilities in Egypt	
Figure 2-22: Average monthly inflow at Lake Nasser for the different scenarios	
Figure 2-23: Annual average inflow at Lake Nasser for the different scenarios	
Figure 2-24: Average monthly flow at Ed-Deim station for the different scenarios	
Figure 2-25: Annual average flow at Ed-Deim station for the different scenarios	
Figure 3-1: Flowchart showing the research methodology	
Figure 3-2: Schematic representation of the hydrologic cycle	
Figure 3-3: Schematic of pathways for water movement in SWAT	
Figure 3-4: Relationship of runoff to rainfall in SCS curve number method	
Figure 3-5: Unconfined and confined aquifers	
Figure 3-6: Groundwater flow net in an idealized hilly region with homogenous	
permeable material resting on an impermeable base	.60
Figure 3-7: Stream-groundwater relationships: a) gaining stream receiving water from	
groundwater flow; b) losing stream connected to groundwater system; c) losing stream	
perched above groundwater system; and d) flow-through stream	
Figure 3-8: ResSim module concepts (Reference)	
Figure 4-1: The Globcover 300 m resolution global land cover map	
Figure 4-2: Area covered by the 22 global classes	

Figure 4-3: Mean monthly rainfall comparison between CFSR data and observations	
Bahr Dar Station	
Figure 4-4: Mean monthly rainfall comparison between CFSR data and observations	
El-Damazin Station	
Figure 4-5: Blue Nile Basin flow gauge stations locations	
Figure 4-6: Mean monthly flow at Abbay at Bahr Dar Station	
Figure 4-7: Mean monthly flow at Abbay at Kessie Station	
Figure 4-8: Mean monthly flow at Ed-Deim Station	
Figure 4-9: Mean monthly flow at BN at Roseires Station	
Figure 4-10: Mean monthly flow at BN at Sennar Station	
Figure 4-11: Mean monthly flow at BN at Khartoum Station	
Figure 4-12: Mean monthly flow at Atbara at Kilo 3 Station	
Figure 4-13: Mean monthly flow at White Nile at Khartoum Station	
Figure 4-14: Mean monthly flow at Dongola Station	
Figure 4-15: Existing Reservoirs in BNB	
Figure 4-16: Proposed Dams in the BNB	
Figure 4-17: Existing irrigation schemes in the Ethiopian Blue Nile	
Figure 4-18: A map shows the location of the proposed irrigation schemes in the BN	
Figure 4.10. Dive Wile Sub-basing	
Figure 4-19: Blue Nile Sub-basins	
Figure 4-20: BN-SWAT model HRUs definition	
Figure 4-21: Locations of weather stations	
Figure 4-22: Time zone selection	
Figure 4-24: BN-SWAT subbasins as a base map for HEC-ResSim model	
Figure 4-26: Roseires Reservoir Pool Data	
Figure 4-27: Sennar Reservoir Pool Data	
Figure 4-28: HAD Pool Data	
Figure 4-29: Roseires Reservoir Pool Net Evaporation	
Figure 4-30: Sennar Reservoir Pool Net Evaporation	
Figure 4-31: HAD Pool Net Evaporation	
Figure 4-32: Roseires Reservoir Operation Zones	
Figure 4-33: Sennar Reservoir Operation Zones	
Figure 4-34: HAD Operation Zones	
Figure 5-1: Calibration gauge stations	
Figure 5-2: Calibrated flow at Ed-Deim station	
Figure 5-3: Validated flow at Ed-Deim station	
Figure 5-4: Calibrated flow at Khartoum station	
Figure 5-5: Validated flow at Khartoum station	
Figure 5-6: Simulated vs. Observed flows for calibration period at Ed-Deim station.	
Figure 5-7: Simulated vs. Observed flows for validation period at Ed-Deim station	
Figure 5-8: Simulated vs. Observed flows for calibration period at Khartoum station	
Figure 5-9: Simulated vs. Observed flows for validation period at Khartoum station.	
Figure 5-10: Monthly flow verification at Ed-Deim station	
Figure 5-11: Monthly flow verification at Khartoum station	
Figure 5-12: Monthly flow verification at Dongola station	
Figure 5-13: Annual flow verification at Ed-Deim station	
Figure 5-14: Annual flow verification at Khartoum station	
Figure 5-15: Annual flow verification at Dongola station	112

Figure 5-16: HAD monthly pool elevation verification	113
Figure 5-17: HAD annual pool elevation verification	113
Figure 6-1: Mean monthly flow at Khartoum station for Base Case Scenario	116
Figure 6-2: Mean monthly flow at Dongola station for Base Case Scenario	116
Figure 6-3: Annual HAD pool elevation for Base Case Scenario	117
Figure 6-4: Annual HAD power for Base Case Scenario	117
Figure 6-5: Development Scenarios description	118
Figure 6-6: Annual flow at Dongola Station	
Figure 6-7: Annual HAD pool elevation for 3 years filling scenario	
Figure 6-8: Annual HAD pool elevation for 5 years filling scenario	
Figure 6-9: Annual HAD pool elevation for 7 years filling scenario	
Figure 6-10: Annual HAD hydropower for 3 years filling scenario	
Figure 6-11: Annual HAD hydropower for 5 years filling scenario	
Figure 6-12: Annual HAD hydropower for 7 years filling scenario	
Figure 6-13: Dongola station mean monthly flow for 3 years filling scenario	
Figure 6-14: Dongola station mean monthly flow for 5 years filling scenario	
Figure 6-15: Dongola station mean monthly flow for 7 years filling scenario	
Figure 6-16: Ed-Deim Station mean monthly flow for Scen.01	
Figure 6-17: Dongola Station mean monthly flow for Scen.02	
Figure 6-18: HAD annual pool elevation for Scen.01	
Figure 6-19: HAD annual hydropower for Scen.01	
Figure 6-20: Ed-Deim Station mean monthly flow for Scen.02	128
Figure 6-21: Ed-Deim Station mean monthly flow for Scen.02	129
Figure 6-22: HAD annual pool elevation for Scen.02	
Figure 6-23: HAD annual pool elevation for Scen.02	
Figure 6-24: Ed-Deim Station mean monthly flow for Scen.03	
Figure 6-25: Dongola Station mean monthly flow for Scen.03	
Figure 6-26: HAD annual pool elevation for Scen.03	
Figure 6-27: HAD annual hydropower for Scen.03	
Figure 6-28: Ed-Deim Station mean monthly flow for Scen.04	
Figure 6-29: Dongola Station mean monthly flow for Scen.04	
Figure 6-30: HAD annual pool elevation for Scen.04	
Figure 6-31: HAD annual hydropower for Scen.04	
Figure 6-32: Ed-Deim Station mean monthly flow for Scen.05	
Figure 6-33: Dongola Station mean monthly flow for Scen.05	
Figure 6-34: HAD annual pool elevation for Scen.05	
Figure 6-35: HAD annual hydropower for Scen.05	
Figure 6-36: Ed-Deim Station mean monthly flow for Scen.06	
Figure 6-37: Dongola Station mean monthly flow for Scen.06	
Figure 6-38: HAD annual pool elevation for Scen.06	
Figure 6-39: HAD annual hydropower for Scen.06	
Figure 6-40: Ed-Deim Station mean monthly flow for Scen.07	
Figure 6-41: Dongola Station mean monthly flow for Scen.07	
Figure 6-42: HAD annual pool elevation for Scen.07	
Figure 6-43: HAD annual hydropower for Scen.07	142