Non-Surgical Septal Reduction in Hypertrophic Obstructive Cardiomyopathy

Thesis submitted for the partial fulfillment for M.D. degree in cardiology

Presented by
Mohsen Khairy Mahmoud Tahoun
M.B.B.ch., M.Sc in cardiology

Supervised by **Dr.Adel M. zaki, MD**

Professor of cardiology Cairo University

Dr. Aymen F. Kaddeah, MD

Professor of cardiology Cairo University

Dr.Magdy Abd-Elhamid, MD

Professor of cardiology Cairo University

Faculty of Medicine Cairo University 2008

Abstract

Key Words: hypertrophic-cardiomyopathy- alcohol-septal ablation-echocardiography

Background— Alcohol septal ablation (ASA) has been introduced as alternative therapy for hypertrophic obstructive cardiomyopathy that's refractory to medical treatment.

Methods and Results—In this study we report the acute and short term of results of ASA in 21 symptomatic patients(44.45 ±12.48 years) with hypertrophic cardiomyopathy. They had resting or provoked left ventricular outflow tract (LVOT) pressure gradient ≥ 30 mmHg. Peak invasive LVOT gradient at rest was 75.8 ± 42.6 mmHg and dropped to 18 ± 23 mmHg with a p-value < 0.001, in the cath lab after ASA. One month later, the peak Doppler LVOT gradient decreased to 20 ± 13 mmHg (p-value < 0.001) compared to Doppler baseline. One patient developed CHB and a permanent pace maker was implanted. After one month symptoms improved as NYHA functional class decreased from 2.63 ± 0.91 to 1.02 ± 0.51 with p-value of < 0.001. Those with angina pectoris class 2.141 ± 1.08 , decreased to 0.71 ± 0.56 with p-value of < 0.001.

Conclusion— Alcohol septal ablation is an effective and safe procedure for the management of patients with HCM refractory to medical therapy.

Acknowledgment

I would like to express my deepest gratitude to all those who helped me accomplish this thesis.

Words can't express my sincere thanks and appreciation to **Dr. Adel Zaki** Prof. of cardiology and the head of cardiology department, Cairo University, for providing me with the research idea, continuous encouragement and great technical, scientific and moral support.

I would like to thank Prof. **Dr. Ayman Kaddah** for his help and support.

My sincere gratitude is also to Prof. **Dr. Magdy Abd El Hamid** for his guidance, great help and supervision.

Special thanks to Dr. **Amr ElFaramawy** for his most and continuous help and encouragement.

I would like also to extend my thanks to my wife and family for their continuous help and assistance.

My gratitude also goes to all members of the cardiology department in Cairo University, last but not least, thanks to my patients for their trust and endurance.

The Candidate 2008

TABLE OF CONTENS

	Page
LIST OF TABLES	II
LIST OF GRAPHS	III
LIST OF FIGURES	IV
LIST OF ABBREVIATIONS	VI
INTRODUCTION AND AIM OF WORK	1
REVIEW OF LITERATURE	
Etiology and Genetics of Hypertrophic Cardiomyopathy	3
Natural history of hypertrophic cardiomyopathy	13
Pathophysiology of HOCM	23
Clinical Presentation	37
Management of Hypertrophic cardiomyopathy	50
PATIENT AND METHODS	80
RESULTS	85
DISCUSSION	109
SUMMARY	118
CONCLUSION	123
REFERENCES	124
MASTER TABLE	144
ARABIC SUMMARY	149

LIST OF TABLES

Page
Table (1): Possible mechanisms for myocardial ischaemia in HCM36
Table (2): ACC/AHA/NASPE: Pacing indications for hypertrophic
cardiomyopathy58
Table (3): Risk Factors for Sudden Cardiac Death in Hypertrophic
Cardiomyopathy69
Table (4): Triggers for sudden death and their associated treatment69
Table 5. Atrial fibrillation in HCM ACC/AHA/ ESC guidelines. 77
Table (6): Clinical baseline data
Table (7): The results of echocardiography before, 24H after and 1 month
post ASA

LIST OF GRAPHS

Graph (1): Patient functional capacity and angina pains pre and post one	
month	87
Graph (2): Maximum enzyme rise correlation with LVOT pressure gradient	
reduction after one-month follow up	•
Graph (3): Acute invasive pressure gradient reduction	94
Graph (4): Echocardiography Pg reduction	.95
Graph (5): Correlation of severity of invasive LVOT gradient and acute LVOT gradient	
reduction	.95
Graph (6): Correlation of severity of LVOT gradient and acute LVOT gradient reduction by	
Doppler	96
Graph (7): Correlation of severity of LVOT gradient and LVOT gradient reduction by Dopple	ler
after one month	96
Graph (8): Correlation of severity of LVOT gradient and LVOT gradient reduction by Dopple	ler
after one month	97
Graph (9): Correlation between posterior wall thickness reduction and of LVOT gradient	
reduction after one month	98
Graph (10): Correlation between posterior wall thickness and of LVOT gradient reduction at	fter
one month	99
Graph (11): Correlation between SAM and of invasive LVOT gradient reduction	100

LIST OF FIGURES

Pages
Figure (1): Myocyte disarray in hypertrophic cardiomyopathy5
Figure (2): Human sarcomere and mutations in familial hypertrophic
cardiomyopathy7
Figure (3): Hemodynamics in HCM with fixed left ventricular outflow
obstruction
Figure (4) : HCM with left ventricular outflow tract obstruction at rest24
Figure (5) : Induced obstruction with provocation in HCM24
Figure (6): HCM with variable left ventricular outflow tract obstruction26
Figure (7): Midcavity obstructive HCM27
Figure (8): LV aneurysm in midcavity HCM27
Figure (9): Mechanism of mitral regurgitation in hypertrophic
cardiomyopathy31
Figure (10): Diagrammatic representation of the character of the systolic
murmur and of the second heart sound in several abnormalities38
Figure (11):Classification of the pattern of hypertrophy in hypertrophic
cardiomyopathy40
Figure (12): Continuous wave Doppler echocardiogram in hypertrophic
cardiomyopathy41
Figure (13). M-mode, continuous wave, and pulsed wave Doppler tracings
of two patients43
Figure(14): Algorithm for symptomatic treatment51
Figure (15): Mortality after septal myectomy in HCM is related to
preoperative risk factors55
Figure (16): Ventricular pacing reduces LV outflow obstruction57
Figure (17): Ethanol ablation in HCM

Figure (18): The implantable cardioverter defibrillator is effective in
hypertrophic cardlomyopathy72
Figure (19): Presentation and treatment strategies for patient subgroups
within the broad clinical spectrum of hypertrophic cardiomyopathy79
Figure (20): Flow chart of patient population85
Figure (21): ECG (case no. 8) before ASA (A), immediately after (B),
and one month later (C)89
Figure (22): Simultaneous pressure recording (case no. 14) of LV-apex
and a pig-tail catheter at aorta92
Figure (23): Fluoroscopy of Case No (17) with DDD pace-maker93
Figure (24): long axis parasternal 2-D view (Case no.3). Before and
after ASA98
Figure (25): long axis parasternal M-mode view (Case no.1)99
Figure (26): Apical 4-chamber view (Case no.6) with left ventricle
mid-cavity obstruction
Figure(27): Myocardial echo contrast1: The basal septum visualized
(First septal branch cannulation)103
Figure(28): Myocardial echo contrast2: The basal septum and lateral
wall visualized indicating wrong Diagonal branch cannulation104

LIST OF ABBREVIATIONS

2-D Two-dimensional Mitral flow A-wave A Mitral flow A-wave baseline **A** 1 A 2 Mitral flow A-wave 24h post ASA **A** 3 Mitral flow A-wave month after ASA **AAI** Single chamber pace maker (atrial) **ACC** American collage of cardiology **ACE** Angiotensin converting enzyme **AF** Atrial fibrillation **AHA** American heart association **AICD** Automatic implantable cardioverter defibrillator **AMP** Adenosine monophosphate **ASA** Alcohol septal ablation. **ATP** Adenosine triphosphate \mathbf{AV} Atrioventricular **CABG** Coronary artery bypass graft. **CCS** Canadian cardiology society **CCU** Cardiac care unit **CHB** Complete heart block CHB₁ Complete heart block before ASA CHB 2 Complete heart block after ASA CK Creatine kinase cTnI Cardiac troponin I **DDD** dual-chamber pace maker **ECG** Electrocardiogram \mathbf{E} Mitral flow E-wave E 1 Mitral flow E-wave baseline E 2 Mitral flow E-wave 24h post ASA **E** 3 Mitral flow E-wave month after ASA **EF** Ejection fraction EF 1 Ejection fraction 24h post ASA EF 2 Ejection fraction 24h post ASA

Ejection fraction month after ASA

EF 3

HCM Hypertrophic cardiomyopathy

HF Heart failure

HOCM hypertrophic obstruction cardiomyopathy

LA Left atrium

LA 1 Left atrium baseline

LA 2 Left atrium after 24h of ASA
LA 3 Left atrium 1 month after ASA
LAD left anterior descending artery

LAMP2 Lysosome-associated membrane protein 2

LBBB Left bundle branch block

LBBB 1 Left bundle branch block before ASALBBB 2 Left bundle branch block after ASA

LV Left ventricle

LVEF Left ventricular ejection fraction

LVEF 1 Left ventricular ejection fraction before ASA

LVEF 2 Left ventricular ejection fraction after 24h of ASA LVEF 3 Left ventricular ejection fraction 1 month after ASA

LVH Left ventricular hypertrophy

LVIDD Left ventricle internal dimensions in diastole

LVIDD 1 LVIDD baseline

LVIDD 2 LVIDD after 24h of ASA LVIDD 3 LVIDD 1 month after ASA

LVIDS Left ventricle internal dimensions in systole

LVIDS 1 LVIDS baseline

LVIDS 2 LVIDS after 24h of ASA LVIDS 3 LVIDS 1 month after ASA

LVOT left ventricular outflow obstruction

MAZE Surgical procedure to abolish atrial fibrillation;

MCE Myocardial contrast echocardiography

MLP muscle LIM protein

MPI Myocardial perfusion imaging

MR Mitral regurgitation

MR 1 Mitral regurgitation baseline

MR 2 Mitral regurgitation 24h of ASA

MR 3 Mitral regurgitation 1 month after ASA

MRI Magnetic resonance imaging

MVG Velocity gradient

MVR Mitral valve replacement

NSRT Non-surgical septal reduction therapy **NSVT** Non-sustained ventricular tachycardia

NYHA New York heart association

PAPSP Pulmonary artery predicted systolic pressure

PAPSP 1 PAPSP baseline

PAPSP 2 PAPSP after 24h of ASAPAPSP 3 PAPSP 1 month after ASA

Pg Pressure gradient

Pg1 Baseline doppler pressure gradient

Pg2 In cath. acheived doppler pressure gradient

Pg3 Doppler pressure gradient after 24h
 Pg4 Doppler pressure gradient after month
 Pgi1 Invasive pressure gradient baseline
 Pgi2 Invasive pressure gradient after ASA

PRKAG2 gamma-2 regulatory subunit of adenosine monophosphate-

activated protein kinase (PRKAG2

PV Pulmonary vein

PWT Posterior wall thickness

PWT 1 Posterior wall thickness before ASAPWT 2 Posterior wall thickness after 24h

PWT 3 Posterior wall thickness

RAAS Rrenin-angiotensin-aldosterone system

RBBB Right bundle block

RBBB 1 Right bundle block before ASARBBB 2 Right bundle block after ASA

SAM systolic anterior motion

SAM 1 systolic anterior motion baseline

SAM 2 systolic anterior motion 24h after ASA systolic anterior motion after 1 month

SCD Sudden cardiac death

SD Sudden death

SWT1 Septal wall thickness baseline

SWT2 Septal wall thickness 24h after ASASWT3 Septal wall thickness after 1 month

TASH Transcoronary ablation of septal hypertrophy

TDE Tissue Doppler echocardiography

VF Ventricular fibrillation

VPBs Ventricular premature beats

VT Ventricular tachycardiaVTI Velocity time integral

VTI 1 Velocity time integral baseline

VTI 2 Velocity time integral 24h after ASAVTI 3 Velocity time integral after 1 month

VVI Single chamber pace maker (ventricular)

WPW Wolff-Parkinson-White

Introduction and aim of work

Hypertrophic cardiomyopathy (HCM) is a unique disease entity that has fascinated cardiologists for decades. The original description of a patient with hypertrophic cardiomyopathy was by Sir Russell Brock in 1958 when he found a normal aortic valve at the time of operation for "severe" aortic stenosis. One year later Dr. Donald Teare reported on several patients who died suddenly and were thought to have a hamartoma in the heart (1). In early 1960s, Eugene Braunwald described the unique hemodynamic of the disease entity known at that time as *idiopathic hypertrophic subaortic stenosis*. Originally defined as a cardiomyopathy in which there is severe hypertrophy in the absence of a known etiology (2).

The prevalence of HCM appears to be about 0.2 percent in the general population. It is possible; however, that many individuals with HCM go undetected in the community because they manifest mild symptoms and are not referred for echocardiographic studies presentation is sudden death. HCM patients at high risk for sudden death are young, with no or only mild symptoms and preserved systolic function (3).

Relief of left ventricular outflow obstruction (LVOT) obstruction in hypertrophic obstruction cardiomyopathy (HOCM) leads to positive clinical and hemodynamic effects. Obstruction can be relieved by medications, surgery or dual-chamber pacing. Medications are tolerated by some patients and their positive clinical and hemodynamic effects may be maintained. Surgical myotomy-myomectomy is effective in relieving the LVOT gradient, but it requires open heart surgery and surgical studies have reported a small incidence of postoperative atrial fibrillation, aortic insufficiency, complete heart block, remyectomy, ventricular septal defect and death. Dual-chamber pacing studies have demonstrated a modest gradient reduction associated with subjective symptomatic improvement. The mechanism of benefit is unclear, but may be related to both an acute decrease in the LVOT gradient and induced by

alteration in septal activation and a long-term effect due to ventricular remodeling. Non-surgical septal reduction (alcohol septal ablation) has been introduced as an alternative modality to treat patients with incapacitating symptoms due to HOCM. All the reported studies so far have documented a significant improvement in symptoms along with a significant reduction in LVOT gradient immediately after the procedure and up to one year afterwards (4).

So the aim of work is to assess:

- 1- Subjective and objective short term results of the procedure.
- 2- Evaluate alcohol septal ablation (ASA) procedure.

Etiology and Genetics of Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a primary disorder of the myocardium. Although unexplained left ventricular hypertrophy (LVH) is an important pathologic hallmark of disease, altered cardiac morphology is usually age-dependent and is often lacking in children (5, 6).

The prevalence of HCM in the general population, as determined from echocardiographic studies in the United States, Japan, and China, has ranged from 0.16 to 0.30 percent. (3,5-8)Men and blacks appear to be affected more than twice as often as women and whites, respectively (3). It is not known if this number reflects an accurate incidence of familial disease.

Histopathology:

Reveals signs of disorganized myocyte architecture, including disarray of myocyte fibers, intertwined hypertrophied myocytes with bizarre-shaped nuclei, and focal or widespread interstitial fibrosis. In addition to myocyte hypertrophy, the collagen matrix is disorganized and thickened, suggesting that HCM involves changes in connective tissue elements as well as sarcomere proteins (3). Myocyte disarray appears to be a direct response to functional and structural abnormalities of the mutated sarcomeric protein, while fibrosis and small vessel disease are secondary phenomena unrelated to the disarray, but modified by other factors such as left ventricular mass and perhaps local autocrine factors (8).