

Advanced Treatment Planning Techniques in Radiotherapy for Prostate Cancer

Thesis Submitted for partial fulfillment of requirement for the degree of Master of Science(Biophysics)

Presented By

Noha Abdelsalam Hamed Elgazar

B.Sc. (Biophysics) (2010) Faculty of Science, Ain-Shams University

Supervisors

Prof. Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics, Physics Department. Faculty of Science - Ain Shams University

Prof. Dr. Abdelsattar M. Sallam

Professor of Biophysics, Physics Department. Faculty of Science - Ain Shams University

Prof. Dr. Amin El-Sayed Amin

Professor of Radiation Physics, Radiation Oncology Department. Faculty of Medicine - Ain Shams University

Advanced Treatment Planning Techniques in Radiotherapy for Prostate Cancer

Thesis Submitted By

Noha Abdelsalam Hamed Elgazar

for the degree of Master of Science(Biophysics)

to

Department of physics Faculty of Science Ain Shams University

Approval Sheet

Advanced Treatment Planning Techniques in Radiotherapy for Prostate Cancer

Presented By
Noha Abdelsalam Hamed Elgazar

<u>Supervisors</u>	<u>Approved</u>
Prof. Dr. El-Sayed Mahmoud El-Sayed	()
Professor of Biophysics Physics Department Faculty of Science Ain Shams University	
Prof . Dr. Abdelsattar M. Sallam	()
Professor of Biophysics Physics Department Faculty of Science Ain Shams University	
Prof . Dr. Amin El-Sayed Amin	()
Professor of Radiation Physics Radiation Oncology Department Faculty of Medicine Ain Shams University	

Head of physics department Prof. Dr. Fouad Saad El-din

Advanced Treatment Planning Techniques in Radiotherapy for Prostate Cancer

Thesis has been reviewed and approved by the following

Thesis has been reviewed and approved	i by the following
Prof. Dr. El-Sayed Mahmoud El-Sayed	()
Professor of Biophysics, Physics Department Faculty of Science ,Ain Shams University	
Prof . Dr. Abdelsattar M. Sallam	()
Professor of Biophysics, Physics Department Faculty of Science ,Ain Shams University	
Prof . Dr. Amin El-Sayed Amin	()
Professor of Radiation Physics Radiation Oncology Department Faculty of Medicine ,Ain Shams University	
Prof. Dr. Osiris. Wanis. Guirguis	()
Professor of Biophysics, Physics Department Faculty of Science , Cairo University	
Prof . Dr. Khairy Tohamy Erieba	()
Professor of Biophysics, Physics Department	
Faculty of Science, El-azhar University	Head of physics department
	1 0

Head of physics department Prof. Dr. Fouad Saad El-din

Name: Noha Abdelsalam Hamed Elgazar

Degree: M.Sc. (Biophysics)

Department: Physics-Biophysics Group

Faculty: Science

University: Ain-Shams

Graduation Date: 2010 Ain Shams University

Registration Date: 25/6/2014

Data of Award: 2017

Acknowledgement

First of all praise be to Allah the most gracious and merciful. I admit that Allah has the full favor in successfulness of this work.

I am deeply grateful to **Prof .Dr. El-Sayed Mahmoud El-Sayed** Professor of biophysics, faculty
of science .Ain-Shams University. I would like to
express my sincere thanks for his great help,
support and valuable suggestions.

I am deeply grateful to **Prof**. **Dr. Abdelsattar M. Sallam** Professor of biophysics, faculty of science .Ain-Shams University. I would like to express my sincere thanks for his great help, support and valuable suggestions.

I am deeply grateful to **Prof. Dr. Amin El-Sayed Amin** Professor of radiation physics, radiation oncology department, faculty of medicine .Ain-Shams University. I would like to express my sincere thanks for his great help, support and valuable suggestions.

Dedication

no words could express my sincere appreciation, deepest thanks to

My mother

for her endless help.

very special thanks dedicated to
my great **Husband** and my beautiful
daughter **Malak** praying to be safe and
blessed.

Contents

List of Tables	V
List of Figures	vi
List of Abbreviations	xii
Abstract	
Chapter 1: Introduction and Literature Review	
1.1 Introduction	1
1.2 The prostate cancer	2
1.2.1 Structure and function of prostate	2
1.2.2 Staging of prostate cancer	4
1.3 Aim of the Work	4
1.4 Historical background	5
1.5 Outcome of treatment planning and Process Evaluation	6
1.6 Literature Review	7
Chapter 2: Some Theoretical Aspect	
2.1 Advanced radiotherapy techniques	18
2.1.1 Three Dimensional Conformal Radiotherapy (3DCRT)	18
2.1.2 Intensity Modulated Radiotherapy (IMRT)	19
2.1.2.1. IMRT - MLC Delivery methods	20
2.1.2.2 Inverse planning in Intensity Modulated	
Radiotherapy (IMRT)	21
2.1.2.3 Beam angle optimization	22
2.1.3 Volumetric Modulated Radiotherapy (VMAT)	23
2.1.3.1 Volumetric Modulated Arc Therapy optimization	24
2.1.3.2 Avoidance sectors	25
2.2 Planning aims and dose constraints	25
2.3 Physical evaluation indices	27
2.3.1 Homogeneity index (HI)	27
2.3.2 Target coverage index (TCI)	28
2.3.3 Prescription isodose to target volume (PITV) ratio	29
2.3.4 Conformity index (CI)	29
2.3.5 Conformity number (CN)	29
	30
2.3.7 Gradient measure	30
2.3.8 Critical organ scoring index (COSI)	31

2.3.9. Modified critical organ scoring index (MCOSI)	31
2.3.10 Quality factor (QF)	31
2.4 Dose verification	32
2.4.1 Two-Dimensional arrays	33
2.4.2. Gamma evaluation	34
Chapter 3: Materials and Methods	
3.1.Materials	36
3.1.1 Computed tomography	36
3.1.2 Positioning and immobilization tools	37
3.1.2.1 Positioning	37
3.1.2.2 Immobilization system	37
3.1.3 Treatment planning system	38
3.1.4 Physical data of Varian unique linear accelerator	38
3.1.5 2D array	39
3.1.6 Octavius 4D phantom	40
3.2 Methods	41
3.2.1 Patients preparation	41
3.2.2 CT scanning	41
3.2.3 Target delineation	42
3.2.4 Dose prescription	44
3.2.5 Planning techniques and beams arrangement	44
3.2.5.1 Conformal Radiotherapy Technique beam	
arrangement	44
3.2.5.2 Intensity Modulated Radiotherapy beam	40
arrangement	49
3.2.5.3 Volumetric Modulated Arc therapy beam arrangement	63
3.2.6 Evaluation parameters	69
3.2.6.1 Dose distribution	69
3.2.6.2 Dose volume histograms	69
3.2.6.3 Physical evaluation indices	69
3.2.6.4 Number of MU's	70
3.2.6.5 Dose verification	70
Chapter 4: Results and Discussion	
4.1 Three dimensional conformal radiotherapy (3DCRT)	72
4.1.1 Plan evaluation for 3DCRT	72
4.1.1.1 Dose distribution for 3DCRT	72
4.1.1.2 Dose volume histograms for 3DCRT	75

4.1.1.3 PTV dose statistics for 3DCRT	79
4.1.2 Physical evaluation for 3DCRT	81
4.1.2.1.Homogeneity indices for 3DCRT	81
4.1.2.2 Target coverage indices for 3DCRT	81
4.1.2.4.Dose conformity for 3DCRT	83
4.1.2.5.Dose gradient for 3DCRT	83
4.1.2.5. Critical organ scoring index for 3DCRT	84
4.1.2.6 Modified critical organ scoring index for 3DCRT 85	
4.1.2.7. Quality factor (QF) for 3DCRT	86
4.1.3 Monitur unit for 3DCRT	87
4.1.4 Dose verification for 3DCRT	87
4.2. Intensity modulated radiotherapy	89
4.2.1 Plan evaluation in IMRT	89
4.2.1.1 Dose distribution in IMRT	89
4.2.1.2.Dose volume histograms in IMRT	96
4.2.1.3 PTV dose statistics in IMRT	96
4.2.2 Physical evaluation in IMRT	102
4.2.2.1 Homogeneity indices in IMRT	104
4.2.2.2 Target coverage indices(TCI) and PITV in IMRT 104	4
4.2.2.3 Dose conformity in IMRT	105
4.2.2.4 Dose gradient in IMRT	106
4.2.2.5 Critical organ scoring index in IMRT	107
4.2.2.6 Modified critical organ scoring index in IMRT	108
4.2.2.7 Quality factor (QF) in IMRT	108
4.2.3 Monitur unit in IMRT	109
4.2.4 Dose verification in IMRT	110
4.3 Volumetric Modulated Arc Therapy in VMAT	113
4.3.1 Plan evaluation in VMAT	113
4.3.1.1 Dose distribution in VMAT	113
4.2.1.2 Dose volume histograms in VMAT	116
4.3.1.3 PTV Dose statistics in VMAT	118
4.3.2 Physical evaluation VMAT	119
4.3.2.1.Homogeneity indices VMAT	119
4.3.2.2 Target coverage indices TCI and PITV VMAT	121
4.3.2.3. Dose conformity in VMAT	122
4.3.2.4. Dose gradient in VMAT	123
4.3.2.5 Critical organ scoring index in VMAT	124

4.3.2.6 Modified critical organ scoring index in VMAT 124	
4.3.2.7.Quality factor (QF) (VMAT)	125
4. 3.3 Monitur unit (VMAT)	125
4.3.4 Dose verification (VMAT)	126
Conclusion	127
References	129
الملخص العربي	1

List of Tables

Table No	Description	Page
1.1	Staging of prostate cancer.	3
2.1	Constrains of OAR and PTV.	26
2.2	Tissue tolerance for organ at risk.	31

List of Figures

Fig. No.	Description	page
1.1	Prostate with seminal vesicles and seminal ducts, viewed	4
	from in front and above.(Gray, 1918)	
2.1	Increasing conformity to the target volume. (a) Treatment	19
	with rectangular fields was the treatment method used for	
	almost a century, with the addition of wedges and blocks.	
	(b) This illustrates 3D conformal radiotherapy, in which	
	multileaf collimators make it easier to conform fields to the	
	outline of a target. Figure adapted from Webb (2003).	
2.2	Example of how an IMRT treatment can conform to a	20
	concave target shape. Shown are (a) a 3DCRT technique	
	and (b) an IMRT technique. 3DCRT delivers a uniform	
	intensity over the field, IMRT can vary the intensity across	
	the field, Figure adapted from Webb (2003)	
2.3	Methods of using MLCs to create intensity distributions.	21
	When the step-and-shoot method is used, the beam is off	
	during leaf motion, while the dynamic method delivers	
	radiation during leaf motion. Figure from Bortfeld et al.	
	(1999).	
2.4	The movement of MLC inside the treatment machine for	21
	shaping suitable shape even in dynamic or static IMRT.	
2.5	Inverse planning in Intensity Modulated Radiotherapy.	22
2.6	VMAT which the radiation delivered while the gantry	24
	rotates around the patient.	
2.7	VMAT which MLC shaping, gantry rotation speed and	24
	dose rate.	
2.8	Represent the steps of the verification, Figure adapted from	33
	Olofsson(2006)	
2.9	The concept of gamma verification. x, y, D - spatial and	35
	dose dimensions; DTA – distance-to-agreement; Dmax-	
	maxdose deviation; Dr, DD - local spatial and dose	

Fig.	Description	page
	divergence of the analyzed point	
3.1	Computed tomography	36
3.2	Carbon fiber pelvis board	37
3.3	Treatment planning system (Eclipse)	38
3.4	Treatment machine(unique)	39
3.5	2D array (PTTW)	39
3.6	Octavius 4D (PTTW)	40
3.7	CT contour for pelvis scan	41
3.8	Target margin and organ at risk in prostate cancer	43
3.9	target and clinical target margins and planning target	43
3.10	3D conformal technique using 5 fields (3DCRT5)	44
3.11	3D conformal technique using 7 fields (3DCRT7)	45
3.12	Conformal technique using 5 fields (3DCRT5oblique)	46
3.13	3D conformal technique using 5fields (3DCRT 5 OPT).	47
3.14	3D conformal technique using 7 fields (3DCRT 7 OPT).	48
3.15	IMRT technique with 5 fields gantry angle 0°. 72°, 144°.	49
	,216°and 288°(IMRT5).	
3.16	IMRT technique with 6 fields gantry angle 0°, 60°, 120°,	50
	180°, 240° and 300° (IMRT6)).	
3.17	IMRT technique with 7 fields gantry angle 0°. 51°, 102°.	51
	153°, 204°, 255° and 306°(IMRT7).	
3.18	IMRT technique with 8 fields gantry angle 0°,45°,90°,135°	52
	180°,225 .270° and315°(IMRT8).	
3.19	IMRT technique with 6 fields gantry angle 0° 40°, 80°,	53
	120°, 60°, 200°, 240°, 280° and 320°(IMRT9)	
3.20	IMRT technique with 10 fields gantry angle 0°, 36°, 72°,	54
	108°,144°, 180°. 216°, 252°. 288° and 324° (IMRT10).	
3.21	IMRT technique with 11 fields gantry angle 0°, 32.5°, 65°,	55
	97.5°, 130°, 162.5°, 195°, 227.5°, 260°, 292.5° and	
	327.5°(IMRT11).	
3.22	IMRT technique with 5 fields computerized angulations	56

Fig.	Description	page
	(IMRT5 OPT).	
3.23	IMRT technique with 6fields computerized angulations'	57
	(IMRT6 OPT).	
3.24	IMRT technique with 7 fields computerized angulations	58
	(IMRT7 OPT).	
3.25	IMRT technique with 8 fields computerized angulations'	59
	(IMRT8 OPT).	
3.26	IMRT technique with 9 fields computerized angulations'	60
	(IMRT9 OPT).	
3.27	IMRT technique with 10fields computerized angulations	61
	(IMRT10 OPT)	
3.28	IMRT technique with 11 fields computerized	62
	angulations(IMRT11 OPT).	
3.29	One full rotation single arc (SA).	63
3.30	One 300° arc from 210° to 150° (FA rectum).	64
3.31	One 300° arc from 179° to 181° with anterior 60° avoidance	65
	sector, (1FRA bladder).	
3.32	One 300° arc from 210° to 150° with anterior 60° avoidance	66
	sector, (1FRA avoid).	
3.33	Two lateral arcs	67
3.34	Two full arc. one 360°, and another 300° arc from 210° to	68
	150° with anterior 60° avoidance sector, (2FA).	
3.35	Dose verification: (a)Forward approach and(b)Backward	71
	approach.	
4.1	Dose distribution of conformal five field with gantry angles	73
	(0°, 50°, 90°, 310° and 270°) (3DCRT 5 field).	
4.2	Dose distributions of oblique 5 fields 3DCRT with gantry	73
	angles (0°, 50°, 220°, 130° and 310°) (3DCRT 5 oblique).	
4.3	Dose distributions seven fields 3DCRT with Gantry angle	74
	(0°, 50°, 90°, 130°, 220°, 270° and 310°) (3DCRT 7 field).	
4.4	Dose distributions of 5 fields optimize angulations	74