

A Hybrid Approach Based on Artificial Neural Network and Integrated Production Modeling for Gas Lift Optimization

By

Mazen Mohamed Bahaa El-Din Hussein Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
GAS PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A Hybrid Approach Based on Artificial Neural Network and Integrated Production Modeling for Gas Lift Optimization

By Mazen Mohamed Bahaa El-Din Hussein Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

GAS PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Eissa Mohamed Shokir

Dr. Ismail Mahgoub

Professor of Petroleum Engineering Mining, Petroleum and Metallurgical Engineering Department Engineering, Cairo University Head of Petroleum Engineering Department at Future university in Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A Hybrid Approach Based on Artificial Neural Network and Integrated Production Modeling for Gas Lift Optimization

By Mazen Mohamed Bahaa El-Din Hussein Hamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in PETROLEUM ENGINEERING NATURAL GAS ENGINEERING AND PRODUCTION

Approved by the Examining Committee	
Prof. Dr. Eissa Mohamed Shokir, T Professor, Cairo University	Thesis Main Advisor, Petroleum Engineering
Dr. Ismail Shaaban Mahgoub, Thes University in Egypt	sis Member, Head of Petroleum Department at Futur
Prof. Dr. Khaled Abdel Fattah, Inte	ernal Examiner, Petroleum Engineering Professor,
· ·	ner), External Examiner, Vice President, Eastern Hemisphere, President, Eastern Hemisphere SSI Artificial Lift Company

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Mazen Mohamed Bahaa El-Din Hussein Hamed

Date of Birth: 25/1/1991 **Nationality:** Egyptian

E-mail: <u>eldinmm@gupco.net</u>; mazen_bahaa2000@yahoo.com

Phone: 01003684120

Address: 32, Masged Eltawheed St, Hadayek El Maadi, Cairo, Egypt

Registration Date: 01/03/2013 **Awarding Date:** / /201

Degree: Master of Science

Department: Gas Production Engineering

Cairo University

Dr. Ismail shaaban Mahgoub, Head of Petroleum Department, Future

University in Egypt

Examiners: Porf. Dr. Eissa Mohamed Shokir (Thesis Advisor)

Dr. Ismail Shaaban Mahgoub (Advisor), Head of Petroleum Department,

Future University in Egypt)

Dr. Mohamed Ghareeb (External examiner), External Examiner, Vice President, Eastern Hemisphere, LUFKIN company, previously and Vice President, Eastern Hemisphere SSI Artificial Lift Company currently

Prof. Dr. Khaled Abdel Fattah (Internal examiner)

Title of Thesis:

A Hybrid Approach Based on Artificial Neural Network and Integrated Production Modeling for Gas Lift Optimization

Key Words:

Integrated production Modeling; Gas lift Optimization; artificial neural network modeling; estimating well bottom hole pressure; predicting well fluid rate.

Summary:

An artificial neural network model was developed to predict the values of the bottom hole flowing pressure and the total fluid rate per each well using the available field parameters like the water cut samples, static pressure surveys, reservoir gas oil ratio, the well head temperature and pressure in addition to the gas injection rate and gas injection pressure. This developed ANN used in building accurate individual well models on PROSPER and a full field network model gathering all the individuals' models with the surface network. This creates an integrated production model aiming to perform field wide gas lift optimization.

Acknowledgement

I would like to express my appreciation to Prof. Dr. Eissa Shokir for his valuable guidance, helpful suggestions, encouragement and patience during the preparation of this research. Dr. Ismail Mahgoub for his assistance.

Sincere appreciation to:

• Reservoir team at GUPCO that I am proud to be a part of that team for their cooperative manner and outstanding performance in meeting company challenges that assist us in improving our work experience as a team.

Dedication

I would like to dedicate this thesis to my parents who stands beside me giving me the continuous assistance and support through my whole life. They are the main reason for any success in my life after the God almighty. They deserve a lot, there is nothing can express my love and pride toward them.

Table of Contents

ACKNOWLEDGEMENT	I
DEDICATION	VI
TABLE OF CONTENT	III
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	X
ABSTRACT	XII
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	2
2.1.WELL INFLOW AND OUTFLOW PERFORMANCE	2
2.1.1.Well Inflow Performance	2
2.1.2.Well Outflow Performance	3
2.2.GAS LIFT SYSTEM	8
2.2.1.Gas Lift Applications	10
2.2.2.Types of Gas Lift	10
2.2.3.Advantage of Continuous Over Intermittent Gas Lift	13
2.2.4.Gas Lift Valves	13
2.3.GAS LIFT OPTIMIZATION	14

2.3.1.Optimization Methods and Techniques	
2.4.ARTIFICIAL NEURAL NETWORK	18
2.4.1.Introduction	18
2.4.2.The Power of The Artificial Neural Network	. 19
2.4.3.The Artificial Neural Network Architecture and framework	. 21
2.4.3.1.Activation (Transfer) Functions	. 21
2.4.3.2.FeedForward Neural Network	. 23
2.4.3.3.The Network Learning Process	. 24
2.5.THE BACK-PROPAGATION ALGORITHM	29
CHAPTER 3 STATEMENT OF PROBLEM	30
CHAPTER 4 BUILDING THE ARTIFICIAL NEURAL NETWORK MODEL	31
NETWORK MODEL	31
NETWORK MODEL	31
NETWORK MODEL	31 . 31 . 32
NETWORK MODEL 4.1.INTRODUCTION 4.2.DATA GATHERING 4.3.DATA QUALITY CONTROL	31 . 31 . 32
NETWORK MODEL 4.1.INTRODUCTION 4.2.DATA GATHERING 4.3.DATA QUALITY CONTROL 4.4.THE ANN MODEL MECHANISM	31 . 32 . 33
NETWORK MODEL 4.1.INTRODUCTION 4.2.DATA GATHERING 4.3.DATA QUALITY CONTROL 4.4.THE ANN MODEL MECHANISM 4.5.THE MODEL SPECIFICATION	31 . 32 . 33 . 34

5.1.1.PROSPER Main Menu	38
5.2.DESCRIPTION OF MULTI-WELL NETWORK GENERAL	
ALLOCATION PACKAGE (GAP) MODEL	41
5.2.1.Optimization Procedure	41
5.3.ESTIMATING OF OPTIMUM GAS-INJECTION RATE	. 44
CHAPTER 6 RESULTS AND DISCUSSION	50
6.1.THE DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL	50
6.2.THE GAS- LIFT OPTIMIZATION USING INTEGRATED	
PRODUCTION MODELING	55
6.2.1.GAP Simulator Results.	55
CHAPTER 7 CONCLUSION AND RECOMMENDATIONS.	62
7.1. CONCLUSION	62
7.2. RECOMENDATIONS	63
REFERENCES	64
APPENDIX A	68
APPENDIX B	70
APPENDIX C	72

List of Table

Table 6.1 : The Statistics Table of the Minimum and Maximum Values of the Developed A	NN
Parameters	50
Table B.1: The Points Used as a Secondary Test for the Developed ANN Model	72
Table B.2 : The Absolute Error and the Relative Error for the P _{wf} and Q _f	73
Table C.1: The Output Data of the Developed ANN Model which Used in the IPM	75
Table C.2: The Comparison between Actual and Optimized Gas lift Rates and Oil Rates (Comparison) No.1)	
Table C.3: The Comparison between Actual and Optimized Gas lift Rates and Oil Rates (C No.2)	

List of Figures

Figure 2.1: Example of Vogel Curve vs Approach	3
Figure 2.2: Different Types of Flow Regimes.	4
Figure 2.3: Gas Lift Well Schematic	8
Figure 2.4: Total Gas Lift System Schematic	9
Figure 2.5: Continuous Gas Lift System Schematic	10
Figure 2.6: Gas Lifting Mechanisms.	11
Figure 2.7: Intermittent Gas Lift	12
Figure 2.8: Single Well Optimization.	15
Figure 2.9: Artificial Neural Network Components	18
Figure 2.10: The General Neuron Model	21
Figure 2.11: Threshold Activation Function	22
Figure 2.12: Sigmoid Activation Function.	22
Figure 2.13: FeedForward Neural Network	23
Figure 2.14: Trained Neuron.	25
Figure 2.15: Perceptron Learning Rule.	26
Figure 2.16: Delta Learning Rule	27
Figure 2.17: The Three Layer Back-Propagation Neural Network	29
Figure 4.1: Source of Input Parameters	32
Figure 4.2: The inputs and the outputs of the developed model	33
Figure 4.3: The ANN Model types	34
Figure 4.4: The ANN Model Structure	35
Figure 4.5: The ANN Model Inputs Distribution.	35
Figure 4.6: The ANN Model Hidden Neurons Number	35

Figure 4.7: The ANN Model Algorithm Choice	36
Figure 4.8: The ANN Model Error Histogram.	36
Figure 4.9: The ANN Model Performance	37
Figure 5.1: Case for PROSPER Options Summary Window	38
Figure 5.2: Case for PROSPER PVT Matching Window	39
Figure 5.3: Case for PROSPER Equipment Data Window	39
Figure 5.4: Case for Continuous Gas Lift Window	40
Figure 5.5: Case for IPR Data Window	40
Figure 5.6: Case for System Options Window	41
Figure 5.7: Case for IPR Input Entry Window	42
Figure 5.8: Case for VLP Input Entry Window	42
Figure 5.9: Case for Well Control Entry Window	43
Figure 5.10: Case for VLP Generation Parameters Entry Window	43
Figure 5.11: Case for Network Solver Calculations	44
Figure 5.12: Water Cut of Each Well	45
Figure 5.13: Static Pressure of Each Well	45
Figure 5.14: Injection Gas of Each Well	46
Figure 5.15: Injection Gas Pressure of Each Well	46
Figure 5.16: Well Head Pressure of Each Well	47
Figure 5.17: Well Head Temperature of Each Well	47
Figure 5.18: Total Fluid Rate of Each Well	48
Figure 5.19: Bottom Hole Flowing Pressure of Each Well	48
Figure 5.20: Schematic for GAP Model	49
Figure 6.1: The ANN Model Performance through Training, Validation and Test	52

Figure 6.2: The Plot of the Actual Fluid Rate vs. ANN Fluid Rate	53
Figure 6.3: The Plot of the Actual Flowing Bottom Hole pressure vs. Values of the ANN	5 2
Flowing Bottom Hole pressure	53
Figure 6.4: The Calculate Values of Fluid Rate vs. Measured Values	54
Figure 6.5: The Plot of the Actual Flowing Bottom Hole pressure vs. Values of the ANN	
Flowing Bottom Hole pressure	54
Figure 6.6: Actual vs. Optimized Oil Rate per Each Well (case #1)	57
Figure 6.7: Actual vs. Optimized Gas Injection Rate per Each Well (Case #1)	57
Figure 6.8: Oil Rate Gained per Each Well (case #1)	58
Figure 6.9: Saved Injected Gas Rate per Each Well (case #1)	58
Figure 6.10: Actual vs. Optimized Oil Rate per Each Well (case #2)	59
Figure 6.11: Actual vs. Optimized Gas Injection Rate per Each Well (Case #2)	59
Figure 6.12: Oil Rate Gained per Each Well (case #2)	60
Figure 6.13: Saved Injected Gas Rate per Each Well (case #2)	60
Figure 6.14: The Oil Gain in Each Case	61
Figure 6.15: The Saved Gas Injection Volume in Each Case	61

Nomenclature

Symbols

C Learning constant that determine the rate of learning

D Inside pipe diameter, Inch

E Least square error

E_K Dimensionless kinetic-energy pressure gradient

F Friction factor

PI Productivity Index, BPD/PSI

 P_{wf} Well bore flowing pressure, PSI

P_r Reservoir pressure, PSI

P_B Bubble point pressure, PSI

PBTD Plugged Back Total Depth, Ft

Q max Maximum liquid production, BPD

Q_f total fluid rate of the well, BFPD

H_L Liquid holdup

SCF/STB Standard cubic feet/Stock tank barrel

STBPD Stock Tank Barrel Per Day

O_i Resulted neuron output

ID Inner Diameter, Inch

R Learning signal

RB/STB Reservoir barrel/Stock tank barrel

wi(t) Old values of t weight vector at time level t

wi(t + 1) New values of weight vector at time level t+1

Δwi Weight adjustment

θ Inclination angle from vertical

 ρ_{mn} Mixture density, PCF

 ρ_L Liquid density, PC

 ρ_n No-slip density,PCF

 ρ_{mn} No-slip mixture density, PCF

V_m Mixture velocity, FT/SEC

Abbreviations

ANN Artificial neural network

BPNN Back propagation neural network

BHFP Bottom-Hole Flowing Pressure

BFPD Barrel fluid per d y

BOPD Barrel oil per day

CO₂ Carbon dioxide

FVF(Bo) Formation Volume Factor

GOR Gas Oil Ratio, SCF/STB

IPM Integrated Production Modeling

PVT Pressure, Volume, Temperature

H₂S Hydrogen sulfide

N₂ Nitrogen

VLP Vertical Lift Performance