

Faculty of Medicine
Department of anesthesia, intensive care
and pain management

The Role of Extracorporeal Membrane Oxygenator In Critically Ill Patients

Essay
Submitted for the Partial Fulfillment of Master
Degree
in Intensive Care

By Mustafa Amin Hassan El Bahnasawye *M.B. B. Ch*,

Supervised by Prof.Dr.Ahmed Ibrahim Ibrahim

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mayar Hassan El Sersi

Assist. Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Dalia Ahmed Ibrahim

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University **2017**

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Ahmed Ibrahim Ibrahim, Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Mayar Hassan El Sersi, Assist. Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University for her sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Dalia Ahmed Ibrahim, Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University Care for her great help, outstanding support, active participation and guidance.

Mustafa Amin Hassan El Bahnasawye

List of Contents

Title	Page No.
List of tables	6
List of figures	7
List of abbreviations	9
Introduction and aim of the work	1
ECMO: history, physiology and principles	4
Indications, patient selection and p	
Potential complications associated with support	
Summary	68
References	70
Summary in arabic	

List of Tables

Table No) .	Titl	Title Po		age No.	
Table (1):			Contraindication		38	
Table (2):	Acute lung in	nujury s	score – Murray scor	re	39	
Table (3):	Complications	s on ECI	MO		57	

List of Figures

Fig. No.	Title Pag	e No.
Fig. (1):	Typical bubble oxygenator showing the mixing chamber, heat exchanger defoamer, and arterial reservoir	,
Fig. (2):	The first successful ECMO patient	
Fig. (3):	Diagrammatic representation of peripheral veno-venous (VV-ECMO) and peripheral veno-arterial (VA-ECMO) extracorporeal membrane oxygenation	d)
Fig. (4):	Oxygen delivery (VO ₂ ML) and carbon dioxide removal (VCO ₂ ML) as a function of ECMO blood flow (BF)	า า
Fig. (5):	Partial pressure of oxygen in the arteria blood (PaO2) as a function of pulmonary shunt (Qs/Qt), at various fractions o oxygen at the ventilator	l y f
Fig. (6):	Oxygen delivery and consumption during	g
Fig. (7):	Partial pressure of oxygen in arteria blood (PaO2) as a function of the fraction of the recirculating blood flow (R/BF) a different blood flows (BF)	l n t
Fig. (8):	Mixed venous oxygen saturation (SvmixO ₂) as a function of blood flow cardiac output ratio (BF/CO), at differen oxygen saturation in the blood entering the ML (SinO ₂)	n / t
Fig. (9):	The interaction between cardiac outpu (CO) and blood flow (BF)	t
Fig. (10):	Partial pressure of oxygen in arteria blood (PaO2) as a function of blood flow (BF), at different pulmonary shunt (Qs/Qt)	l v s

List of Figures cont...

Fig. No.	Title	Page No.
Fig. (11):	Partial arterial pressure of oxygen as a function of blood flow (BF), at fractions of oxygen at the vertical (FiO ₂ NL)	various ntilator
Fig. (12):	Schematics of possible venoarterial circuits	ECMO
Fig. (13):	Clinical decision-making in use of in cardiogenic shock	ECMO
Fig. (14):	Clinical decision-making in use of in respiratory failure	ECMO

List of

Abbreviations

Abb.	Full term
	. Activated coagulation time
	. Acute respiratory distress syndrome
<i>BF</i>	. Blood flow
<i>Bp</i>	. Barometric pressure
<i>BP</i>	. Blood pump
CaO_2	. Circuit arterial oxygen
CESAR	. Conventional ventilatory support versus ECMO for Severe Adult Respiratory failure
Cin	. Circuit inlet
CO	. Cardiac output
COPD	. Chronic obstructive pulmonary disease
Cout	. Circuit outlet
<i>CPB</i>	. Cardiopulmonary bypass
Cvmix	. Circuit mixed venous
CvO_2	. Circuit venous oxygen
DO_2	. Systemic oxygen delivery
$ECCO_2R$. Extracorporeal carbon dioxide removal
ECLS	. Extracorporeal life support
<i>ECMO</i>	Extracorporeal membrane oxygenator
F_DO_2	. Fraction of delivered oxygen
FiO ₂	. Fraction of inspired oxygen
<i>GF</i>	. Gas flow
Hb	. Hemoglobin
HIT	. Heparin-induced thrombocytopenia
<i>IABP</i>	. Intra aortic balloon pump

<i>ICH</i>	Intracranial hemorrhage
<i>LFPPV</i>	Low-frequency positive-pressure ventilation

List of Abbreviations cont...

Abb.	Full term
LV	Left ventricle
	Membrane lung
<i>NL</i>	Natural lung
<i>PaO</i> ₂	Pressure of oxygen in the blood
<i>PEEP</i>	Positive end expiratory pressure
<i>PinO</i> ₂	Oxygen pressure entering membrane lung
	Peak inspiratory pressure
	Alveolar partial pressure of oxygen
PO2insp	Partial pressure of oxygen of inspired gases
Pvo ₂	Partial pressure of oxygen in the venous blood
Q	Perfusion
Qs/Qt	Ratio of shunted blood to total cardiac output
$SatO_2$	Oxygen saturation
$SinO_2$	Oxygen saturation entering membrane lung
$SvmixO_2$	Mixed venous oxygen saturation
<i>TPN</i>	Total parenteral nutrition
VA	Venoarterial
<i>VADs</i>	Ventricular assist devices
VCO_2	Carbon dioxide removal
VCO_2NL	Carbon dioxide removal natural lung
VILI	Ventilator induced lung injury
VO2	Oxygen delivery
VO_2NL	Oxygen delivery natural lung
<i>VV</i>	Venovenous

Abstract

Once it has been determined that ECMO will be initiated, the patient is anticoagulated with intravenous heparin. Cannulae are then inserted and the patient is connected to the ECMO circuit. The blood flow is increased until respiratory and hemodynamic parameters are satisfactory. Once the initial respiratory and hemodynamic goals have been achieved, blood flow is maintained, ventilator support is minimized, and vasoactive drugs are decreased to minimal levels. Frequent reassessment and adjustments are usually necessary.

The patient's readiness for weaning from ECMO should be evaluated frequently. Prior to discontinuing ECMO permanently, one or more trials should be performed during which the patient is off ECMO. Such trials give the clinician the opportunity to determine whether conventional supportive care is sufficient for the patient.

Bleeding is the most common complication (30 to 40 percent) of ECMO. Thromboembolism and cannula complications are rare.

Keywords: Pressure of oxygen in the blood - Oxygen pressure entering membrane lung - Peak inspiratory pressure - Natural lung- Left ventricle

Introduction

Extracorporeal membrane oxygenator (ECMO) is a temporary support of heart and lung function by partial cardiopulmonary bypass (up to 75% of cardiac output). It is used for patients who have reversible cardiopulmonary failure from pulmonary, cardiac or other disease. Since the first successful application of the heart-lung machine in 1953, extracorporeal technology had continued to evolve (*Gibbon*, 1978).

The ECMO consists of a cannula to drain deoxygenated blood from the patient, as well as a pump, an artificial lung to provide oxygenation, heat exchanger, and second cannula to return oxygenated blood back to the patient (*Gaffney et al., 2010*).

ECMO has been successfully used in the last 30 years to treat newborns with hypoxic respiratory failure and there is strong evidence that ECMO improves long-term survival of these infants up to 90% (*Javier et al.*, 2013).

Using ECMO, it is possible to support patients for days to months while injured tissues recover. The goal of ECMO for pediatric or adult patients is to provide lung rest from the high levels of oxygen and higher airway pressures that are necessary to support oxygenation and ventilation (*Peek et al.*, 2009).

ECMO can be venovenous (VV) or venoarterial (VA). During VV ECMO, blood is extracted from the vena cava or right atrium and returned to the right atrium. VV ECMO provides respiratory support, but the patient is dependent upon his or her own hemodynamics. During VA ECMO, blood is extracted from the right atrium and returned to the arterial system, bypassing the heart and lungs. VA ECMO provides both respiratory and hemodynamic support (Wang et al., 2008).

Aim of the work

The aim of this work is to discuss the principles and the indications of using ECMO in critically ill patients together with its potential complications.

2