

Application of Multi-dimensional Electrical Resistivity and Electromagnetic Induction Techniques to Explore the Groundwater Occurrences at El-Salloum Basin, Northwestern Coast, Egypt

A Thesis Submitted by

Fardous Mohamed Abdel Hamid Mohamed Zarif

(M.Sc. in Geophysics–Faculty of Science–Suez Canal University, 2009)

For
The Doctor of Philosophy Degree (Ph.D.) of
Science in Geophysics

Geophysics Department Faculty of Science Ain Shams University

(2017)

Application of Multi-dimensional Electrical Resistivity and Electromagnetic Induction Techniques to Explore the Groundwater Occurrences at El-Salloum Basin, Northwestern Coast, Egypt

A Thesis submitted for the Doctor of Philosophy Degree (Ph.D.) of Science in Geophysics

By

Fardous Mohamed Abdel Hamid Mohamed Zarif

(M.Sc. in Geophysics–Faculty of Science–Suez Canal University, 2009)

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Prof.Dr. Salah El-Dien Abdel Wahab

Professor of Geophysics

Faculty of Science

Ain Shams University

Prof. Dr. Ahmed M. A. Youssef

Professor of Geophysics,

Geophysics Department,

Desert Research Center

(DRC)

Prof. Dr. Mohamed Abbas Mabrouk

Emeritus Professor of Geophysics,

Geophysics Department

Desert Research Center

Prof.Dr. Lee slater

Professor of Geophysics,

Department of Earth&

Environment Sciences, Rutgers,

The state University of New Jersey,

USA

Dr. Karam Samir Ibrahim Farag

Lecturer of Geophysics at the Faculty of Science, Ain Shams University

Cairo - 2017

Approval Sheet Thesis Title

Application of Multi-dimensional Electrical Resistivity and Electromagnetic Induction Techniques to Explore the Groundwater Occurrences at El-Salloum Basin, Northwestern Coast, Egypt

Submitted by/ Fardous Mohamed Abdel Hamid Mohamed Zarif M.Sc., Geophysics (2009)

For the Degree of Philosophy Doctor in Science (Geophysics)

This thesis has been approved by Examiner committee

Proi. Dr. Tharwat Anmed Abdel-Fattan	•••••
Prof. of Geophysics	
Alexandria University	
Prof. Dr. El Arabi Hendi Shendi	•••••
Prof. of Geophysics	
Suez Canal University	
Prof. Dr. Mohamed Abbas Mabrouk	•••••
Prof. of Geophysics	
Desert Research Center	
Prof. Dr. Salah El-Dien Abdel Wahab	•••••
Prof. of Geophysics	
Ain Shams University	

DATE OF EXAMINATION: / /2017

Prof. Dr.

Head of Geophysics Department

Ain Shams University Faculty of Science

Application of Multi-dimensional Electrical Resistivity and Electromagnetic Induction Techniques to Explore the Groundwater Occurrences at El-Salloum Basin, Northwestern Coast, Egypt

By

Fardous Mohamed Abdel Hamid Mohamed Zarif

B.Sc., Geophysics (2003) M.Sc., Geophysics (2009)

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Salah El-Dien Abdel Wahab Mousa

Prof. Dr. Mohamed Abbas Mabrouk

Prof. Dr. Ahmed M. A. Youssef

Prof. Dr. Lee slater

Dr. Karam Samir Ibrahim Farag

DATE OF EXAMINATION: / / 2017

ACKNOWLEDGEMENT

This thesis was completed with help and inspiration from glorification of Allah who guided and helped me. I would like to express gratitude to all who have helped me over the last years, but some people deserve special thanks. First of all I would like to thank my Egyptian supervisor Prof. Mohamed Abbas Mabrouk, Prof. Ahmed Youssef and my co-supervisors, Prof. Salah Abdel Wahab and Dr. Karam Samir. They have always helped in any way they could. I would like to think my foreign supervisor Prof. Lee Slater from Rutgers University, Newark, New Jersey, USA. Also my gratefulness for his critical and helpful review in writing the second paper. Prof. Ayman Al-temamy deserves to be acknowledged for taking time to help me in collecting the measurements in the study area. I thank Judy Robinson from Rutgers University of Earth and environmental sciences for introducing me to R2 Coding and helping me in applying the approach to my 2D ERI measurements to inverted the data sets. My gratefulness goes to those financing my Joint mission scholarship; Egyptian cultural affairs and missions sector, Desert Research center. My largest gratitude goes to Prof. Monteiro Santos who give us a permission to use his inv2DVLF code, which was developed recently by him et al (2006) for inverting the VLF tipper data of the single frequency to electrical resistivity. Also I have to thank Monteiro Santos for his critical and helpful reviews.

Special thanks go to prof. Mohamed Abas Mabrouk and prof. Ahmed Youssef who always were ready to answer questions and give valuable comments on my work. I would also like to thank former and present colleagues at Near Surface Geophysics group from Rutgers University for interesting discussions at the coffee breaks and seminars time. During the last years I have learned much about Electrical and Electromagnetic method, Depth of investigation and data analysis. Also Liz Morrin has been a great help taking care of the administrative issues and we have had many pleasant talks during my staying in Rutgers University. I thank all my supervisors for comments and language corrections of my thesis. My parents deserve special thanks. They have supported me in this last very hectic period. It feels good knowing that they always are prepared to help. The most important thanks go to my beloved husband Ahmed Elshenawy. Ahmed, he have read my work and supported me all the way. good knowing that they always are prepared to help. The most important thanks go to my beloved husband Ahmed Elshenawy. Ahmed, he have read my work and supported me all the way.

Fardous zarif

ABSTRACT

Saltwater intrusion into shallow coastal aguifers, exacerbated by excessive groundwater withdrawals, is a major environmental problem along the coastal strip of the western desert of Egypt. This leads to a loss of freshwater resources, mandating alternative, costly water supply methods. Understanding and developing groundwater resources in El Salloum Basin along the northwestern coast of Egypt remains a challenging issue. Since groundwater cannot be easily located, a variety of scientific techniques are needed to provide information concerning its occurrence and location. Groundwater is considered as one of the main sources for both rural and agriculture water supplies in many areas in Egypt especially in the desert regions. Over recent years, increasing abstraction to meet rising demand for domestic supplies and expansion in reclamation in desert fringes has raised concerns for the sustainability of the groundwater resource and the livelihoods it supports. Near-surface electrical methods are a promising technology to evaluate groundwater resources as they are sensitive to physical and chemical variations of the subsurface associated with changing groundwater quality. Vertical Electrical Resistivity Sounding (VES), 2D Electrical Resistivity Imaging (ERI) and Very Low Frequency (VLF) electromagnetic have been applied, to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential of the review for providing potable water. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. VLF- EM surveys identified major geological interfaces suspected to be faults/fractured zones across the study area. A combined analysis of the datasets suggests that the subsurface geology is related to four/five major resistivity layers. Resistivity tomographic images have shown a decrease of resistivity by going deeper (possibly representing clay rich limestone/ saline water impacted fractured limestone) and towards the coastal region where the sea water intrusion may take a place. The equivalent geologic layers suggest that the Oolitic Limestone (Pleistocene age) at the north and the underlain fractured limestone (Middle Miocene) southward areas of coastal plain as the aquifers layers. Sites that will provide appreciable volume of water were suggested base on vertical and lateral extent of the layers. The most promising locations for drilling productive wells

are in the south and southeastern parts of the region, where the potential for potable , groundwater increases substantially. The results from this research demonstrate the capability of integrated 1D-VES, 2D-ERI and VLF-EM techniques to understand and delineate the groundwater occurrence in heterogeneous/ karsts environments.

Key words: Coastal aquifers, Vertical Electrical Sounding (VES), VLF–EM, 2D resistivity imaging, Depth of investigation (DOI)

CONTENT

Subject	Page NO.
Acknowledgment	
Abstract	
Contents	i
List of Figures	iv
List of Tables	xi
Key of Words	X
CHAPTER I: INTRUDUCTION	
1.1. General outline	1
1.2. Site location	
1.3. Literature Review	3
1.4. Problem statement	6
1.5. Objectives	7
CHAPTER II: GEOMORPHOLOGICAL, GOL ANDHYDROGEOLOGICAL SETTING	j
2.1. Geomorphological setting.	
2.1.1. The elevated tableland province	
2.1.2. The low plain province	
a. Piedmont plain	
b. Coastal plain	
i. Elongated parallel Ridges	
i.1. The northern near-shore ridges	
i.2. The southern inland ridges	
ii. Lagoonal Depressions	
ii.1. The Modern Beach	
ii.2. A wave-cut cliff	
ii.3. Lagoon	
ii.4. Salt Marshes lakes	
ii.5. Offshore islands	
ii.6. Abrasion platform	
ii.7. Fore-shore Dunes	
J & 1	15
iii.1. Basins of exterior drainage	
iii.2. Basins of interior drainage	
iv. Depressions	
2.2. Geological aspects	
2.2. 1. Lithostratigraphy	
2.2 1.1 Miocene sediments	
2.2. 1.2. Pliocene sediments	
2 2 1 3 Pleistocene sediments	18

2.2.1.4. Holocene deposits	20
2.3. Geological structures	
2.4. Hydrogeological setting.	
2.4.1. Quaternary aquifer	21
2.4.2. Middle Miocene (Marmarica limestone aquifer)	
2.4.3. Lower Miocene (Moghra aquifer)	
CHAPTER III: DATA ACQUSITION, PROCESSING AND INVERSIG	ON
3.1. Electrical Resistivity Method.	24
3.1.1 Theory of Electrical Resistivity Method	
3.1.2. Data acquisition, processing and inversion of Electrical Resistivity	28
3.1.2.1 1D-Vertical Electrical Sounding (VES)	29
3.1.2.2. 2DElectrical Resistivity Imaging (ERI)	34
a. Contact resistance	35
b. Stacking	35
c. Pulse duration	
3.1.2.2.1. Data acquisition of 2D-Electrical Resistivity imaging (2D-ERI)	
3.1.2.2.2. Data Processing and Inversion of 2D-ERI	38
3.1.3. Strengths and Limitations of DC resistivity Method	42
3.1.4. Depth of investigation	43
3.1.4.1. Resolution matrix and Sensitivity	44
3.1.4.2. DOI index method.	45
3.1.4.3. In-Situ Calibration.	
3.5. Very Low Frequency Electromagnetic (VLF-EM) Method	
3.5.1. Operating Principles and conceptual background	51
3.5.2 Theory of VLF-EM method	
3.5.3 VLF-EM Measured Parameters	
3.5.4. Depth of Penetration of VLF-EM.	
3.5.5. VLF-EM Survey Procedure and Quality control	
3.5.6. Methodology and data acquisition	
3.5.7. VLF–EM Data treatment and Analysis.	
3.5.7.1 Fraser Filter	
3.5.7.2. Karous-Hjelt Filter	62
3.5.8. Two-dimensional (2D) inversion of VLF–EM Data	
3.5.8.1 Forward Modeling.	64
3.5.8.2. Inverse Problem solving and solution	65
CHAPTER IV: RESULTS AND DISCUSSION:	
4.1. Vertical Electrical Sounding (VES) Results	
4.1.1 Presentation of Results.	
4.1.2 Geoelectrical cross sections	
1. W-E cross sections	73

2. S-N cross sections	78
3. NW-SE cross section	79
4.1.3. Contour maps	85
1. Surface layer	85
2. Chalky limestone (water bearing)	85
3. Calcareous clay	
4. Argillaceous limestone (water bearing)	88
4.2. 2D-Electrical Resistivity Imaging results	
4.2.1. 2D-ERI roll along profiles results	96
4.2.2. 2D-ERI on Coastal plain.	
4.2.3. 2D-ERI on Central part of the study area (El- Salloum Basin)	
4.2.4. 2D-ERI on the foot of the scarp of the plateau	
4.2.5. 2D-ERI on Wadi Arkeet south of the study area (Case study)	
4.3. Very Low Frequency Electromagnetic (VLF-EM) results & interpretation.	
4.3.1. VLF-EM profiles results and interpretation at Coastal plain (North part	
study area	
4.3.1.1. Discussion the results of the Coastal plain VLF- EM profiles	
4.3.2 VLF-EM profiles results and interpretation at the basin (central parts	
study area)	
4.3.2.1. Discussion the results of the central part (El Salloum basin) VL	
profiles	
4.3.3. VLF-EM profiles results and interpretation at the foot of the plateau s	
the West and south parts of the study area)	
4.3.3.1. Discussion the results of the profile of the foot of the plateau scarp	
West and south parts of the study area)	
4.3.4. Hydrogeological Implication through VLF-EM Data	185
CHAPTER V: WATER POTENTIALITY IN THE STUDYAREA	100
5.1. Groundwater occurrence throughout the Quaternary	
5.1.1. Oolitic limestone water bearing layer (Pleistocene)	
5.2. Groundwater occurrence throughout Middle Miocene	189
CHAPTERVI: SUMMARY, CONCLUSIONS AND RECOMMENDATION	ONS
Summary, Conclusions	
Recommendations	
REFERENCES	
APPENDIX	
ARABIC SUMMARY	

List of Figures

Page No.

Figure 1.1: The regional planning of the Northern Western Coastal Zone (NWCZ),
(Attia A.A, 1999)2
Figure 1.2: (a) Key map of the study area at the Northwestern coastal plain, (b) Land
sat image showing the location of the study area (El Salloum basin), south the
Mediterranean Sea, Egypt in UTM at 35 N zone, Egypt4
Figure 1.3: Surface elevation of the study area as extracted from the Shuttle Radar
Topography Mission (SRTM) images5
Figure 2.1: Simplified Geomorphologic map, El Salloum Depression area (After
Salem et al., 2011)
Figure 2.2: (Simplified Geologic map of the study area (Salem A. et al
.2011)
Figure 2.3: Composite stratigraphic sequence west Barrani area
Figure 2.4: Columnar section of El Salloum Well (After Salem et al.,
2011)
Figure 2.5: Geological Structure, El Salloum depression area, modified after
(CONOCO, 1986)21
Figure 3.1: A sketch showing the applied Geophysical techniques24
Figure 3.2: Illustration of a four-electrode station containing current and potential
electrodes
Figure 3.3: Common arrays used in resistivity surveys and their geometric
factors
Figure 3.4: Roll-along technique procedures to extend the covered area by a 2-D
survey
Figure 3.5: location map of the study area within VES'S and cross-sections
location29
Figure 3.6: 1-D models obtained from resistivity data inversion at VES 14 and
833
Figure 3.7: Display the equivalence models analysis for VES No.6
Figure 3.8: Electrical Resistivity Imaging: Multi electrode technique
Figure 3.9: Location map of 2D-ERI sites of the study area
Figure 3.10: sketch showing standard and Roll along configuration of 2D-ERT
Survey
Figure 3.11: Flow chart of the process used in geophysical data inversion and
forward modeling39
Figure 3.12 (a): Synthetic resistivity model used to compare the model obtained
from Real field data of site well 10 (b): Forward model obtained from inversion
synthetic data of site well 10
Figure 3.13: Inversion model obtained from inversion Real Field data of site well
10 41

Figure 3.14: Workflow of the proposed 5-steps modified DOI-based methodology to statistically estimate the depth of investigation
Figure 3.15: Shows the global distribution of the common world VLF–EM radio stations
Figure 3.16: Schematic diagram shows the horizontal orientation of the primary VLF–EM radio-wave field with enlargement of secondary magnetic field (Hutchinson, et al., 2010)
Figure 3.17: Schematic diagram shows the tilt angle surveying profile over a vertical subsurface conductive anomaly (Hutchinson, et al., 2010)55
Figure 3.18: Field setup of the VLF–EM system, at each measuring azimuth, over horizontally-layered earth (redrawn after Farag and Tezkan, 2007)
Figure 3.19: Location map of the VLF-EM surveying profiles
Figure 3.21: Typical finite-element mesh (Santos, 2007)
sounding points
for the water supply wells in the study area
(b), showing VES Curves at the Central part and (c) showing the VES curves on the south part of the study area
Figure 4.4: Frequency distribution chart of observed curve types in the Study
Figure 4.5: location map of the study area within VES'S and cross-section location
Figure 4.6: Geoelectrical cross-section A − A\ along W-E direction of the stud area
Figure 4.7: Geoelectrical cross-section B-B\ along W-E direction of the studarea
Figure 4.8: Geoelectrical cross-section C-C\ along W-E direction of the study area
Figure 4.9: Geoelectrical cross-section F-A\ along S-N direction of the studence
Figure 4.10: Geoelectrical cross-section D-D\ along S-N direction of the stud area
area
area
Figure 4.14: Isonach contour man for surface layer

Figure 4.15: Iso-resistivity contour map for chalky limestone layer	87
Figure 4.16: Isopach contour map for chalky limestone layer	87
Figure 4.17 Upper surface level map of Chalky limestone layer	88
Figure 4.18: Iso-resistivity contour map for Calcareous clay layer	89
Figure 4.19: Isopach contour map for Calcareous clay layer	
Figure 4.20 Upper surface level map of calcareous clay layer	
Figure 4.21: Iso-resistivity contour map for argillaceous limestone (Water bearing	
layer	
Figure 4.22: Isopach contour map for argillaceous limestone layer	91
Figure 4.23: Upper surface level map for argillaceous limestone layer	
Figure 4.24: Shows the Inferred structural elements obtained from integration o	
results of VES surveys.	
Figure 4.25: Overview of 2D-ERI lines collected overall the study area	
Figure 4.26 (a) Roll along electrical resistivity profiles conducted from south	
north	
Figure 4.27 Results of step 1 applied to 2D-ERI profile of Site 7.	102
Figure 4.28 Step2: (a): Histogram of the scaled DOI index values estimated for	
ERI profile of site7, the cumulative distribution of the scaled DOI is plotted in	
line. (b): is step3: fitting of the mixture of the two Gaussian distribution or	
cumulative distribution function computed in step 2.	.103
Figure 4.29 shows the interpretability index cross-section computed in step 4	
(site7) 2D-ERI profile	
Figure 4.30 Results of step 5 applied to the site 7.	
Figure 4.31 inverted resistivity models obtained in the north part of the study	
Figure 4.32 Results of step 1 applied to Site 2 2D-ERI profile.	
Figure 4.33 Step 2: (a): Histogram of the scaled DOI index values estimated for	
ERI profile of site 2, the cumulative distribution of the scaled DOI is plotted in	
•	.110
Figure 4.34: Cross-section shows the interpretability index cross-section comp	
in step 4 for (site 2) 2D-ERI profile.	
Figure 4.35 Results of step 5 applied to the site 2. A: ERI image obtained v	
using the reference model q _C . B: ERI image obtained after using II as alpha blen	
values	
Figure 4.36: 2D-ERI profiles obtained in central part of the study	
11gare 1.30. 25 Err promes obtained in central part of the study	
Figure 4.37 Results of step 1 applied to 2D-ERI profile of Site 4.	
Figure 4.38: Step2: (a): Histogram of the scaled DOI index values estimated for	
ERI profile of site 4, the cumulative distribution of the scaled DOI is plotted in	
line. (b): Results of step3	
\- \- \- \- \- \- \- \- \- \- \- \- \	

Figure 4.39: The interpretability index cross-section computed in step 4 for 2D-	-ERI
profile of Site 4.	
Figure 4.40: Shows Results of step 5 applied to the 2D-ERI of site 4	120
Figure 4.41: 2D-ERI profiles obtained in the foot of the plateau scarp	.122
Figure 4.42: shows the 2D- inverted resistivity model of Site 12.	124
Figure 4.43: shows the 2D- inverted resistivity model of Site 10	125
Figure 4.44: shows the 2D- inverted resistivity model of Site 14	126
Figure 4.45: shows the 2D- inverted resistivity model of Site 9	127
Figure 4.46: shows the 2D- inverted resistivity model of Site 8	128
Figure 4.47: Results of the step 1 applied to 2DERI- profile of Site 12.	.130
Figure 4.48: Step 2 (b): Results of step3 of site 12	
Figure 4.49: The interpretability index cross-section computed in step 4 for 2D-	
	.132
Figure 4.50: Shows Results of step 5 applied to the 2D-ERI profile of site 12. A:	2D-
ERI image obtained from using the reference model q C. B: ERI image obtained	after
using II as alpha blending values	.133
Figure 4.51: 2D-ERI obtained in Wadi Arkeet.	.135
Figure 4.52: Results of the step 1 applied to 2D-ERI profile of Site 15	.137
Figure 4.53: Step 2 (b): Results of step3 of site 15	.138
Figure 4.54: The interpretability index cross-section computed in step 4 for 2D-	-ERI
	139
Figure 4.55: Shows Results of step 5 applied to the 2D-ERI profile of site 15	.140
Figure 4.56: Location of the VLF-EM surveying profiles within the study area	144
Figure 4.67: VLF-EM response along VLF-2 profile on the coastal plain	.145
Figure 4.58: VLF-EM response along VLF-12 profile on the basin (central 1	part)
	146
Figure 4.59: VLF-EM response along VLF-23 profile on the basin (ce.	ntral
part)	
Figure 4.60: Scatter plot of VLF-2 profile of Coastal plain	148
Figure 4.61: Scatter plot of VLF-12 profile of the basin (central part) shows	the
degree of correlation between the observed and calculated in-phase and out-p	
	.148
Figure 4.62: Scatter plot of VLF-23 profile of plateau (south part) shows the de	gree
of correlation between the observed and calculated in-phase and out-phase VLF	
	.149
Figure 4.63 (a): Observed and Fraser filtered real and imaginary VLF data of pro-	ofile
VLF -2	
Figure 4.64: (a) Observed and Fraser filtered real and imaginary VLF data of pro-	
VLF -6.	.153
Figure 4.65: (a) Observed and Fraser filtered real and imaginary VLF data pro-	ofile
	.154

Figure 4.66: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 8
Figure 4.67: (a) Observed and Fraser filtered real and imaginary VLF data of profile VLF-19156
Figure 4.68: (a) Observed and Fraser filtered real and imaginary VLF data of profile VLF-14
Figure 4.69: (a) Observed and Fraser filtered real and imaginary VLF data for
profiles VLF-27
Figure 4.70: (a) Observed and Fraser filtered real and imaginary VLF data of profile VLF- 1164
Figure 4.71: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 4
Figure 4.72: (a) Observed and Fraser filtered real and imaginary VLF data of profile VLF
Figure 4.73: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 10167
Figure 4.74: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 26
Figure 4.75: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 18
Figure 4.76: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 20170
Figure 4.77: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 11171
Figure 4.78: (a) Observed and Fraser filtered real and imaginary VLF data of
profiles VLF- 28
Figure 4.79: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 13
Figure 4.80: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 15
Figure 4.81: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 25
Figure 4.82: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 17
Figure 4.83: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 22
Figure 4.84: (a) Observed and Fraser filtered real and imaginary VLF data of profile
VLF- 24184
Figure 4.85: 3D-surface map of Fraser-filtered in-phase of the VLF-EM data with
colored scale the red and Orange color means high real response but the green and
yellow color mean low real response
Figure 5.1: Groundwater occurrence in limestone aguifers

Figure 5.2 shows the white ridges of Oolitic limestone along shore line (Oolitic
limestone aquifer)
Figure 5.3 a collection of pictures captured in the study area to show the highly
fractured chalky at the southern parts of the study area (Middle Miocene
aquifer)190
Figure 5.4: Depth to water contour map of the Middle Miocene aquifer overall the
study area from the available water wells and points
Figure 5.5 Expected water level contour map of the Middle Miocene aquifer which
is inferred from the available water point over all the study area191
Figure 5.6:(a) Iso- Resistivity contour map obtained from geoelectrical resistivity
measurements While,(b)Iso-Salinity contour map obtained from the available water
point
Figure 5.7: Isopach contour map of the water bearing formation which is obtained
from geoelectrical resistivity measurements
Figure 5.8: Sketch shows the conceptual model with the Inferred structural elements
obtained from integration of the results of VES and 2D-ERI surveys
List of tables Page No.
List of tables Page No
Table 4.1 Values of the fitted parameters of the Gaussian distributions computed in
step 3 for the three roll along profiles
step 3 for the three fon along profiles102
Table 4.2 Values of the fitted parameters of the Gaussian distributions computed in
Table 4.2 Values of the fitted parameters of the Gaussian distributions computed in
step 3 for the all profiles over the study area