Diagnostic performance of SPECT/CT versus diffusion-weighted MRI in characterization of equivocal osseous lesions detected by bone scan

Thesis Submitted for Partial Fulfillment of Master Degree in Nuclear Medicine

By

Maha Khalil Mahmoud Khalil

(MB BCH)

South Egypt Cancer Institute - Assiut University

Supervised by

Prof. Dr. Ahmed Abdel-Samie Kandeel

Professor of Nuclear Medicine

Faculty of Medicine-Cairo University

Ass.Prof. Dr.Haisam Ahmed Samy Aly Atta

Assistant Professor of Diagnostic Radiology

South Egypt Cancer Institute- Assiut University

Faculty of medicine Cairo University 2016

Acknowledgements

All praise and gratitude must be attributed to **Allah**; for encompassing me with his grace and his help and for providing me with all that i required to achieve this work.

I would like to express the deepest appreciation to my professor **Dr. Ahmed Abdel-Samie Kandeel**; Professor of Nuclear Medicine, Cairo University for his help, his continuous support and encouragement during the different stages of this thesis which i will never forget.

I also deeply indebted to **Dr. Haisam Ahmed Samy**; Ass. Professor of Diagnostic radiology, South Egypt Cancer Institute, Assiut University, who helped me to get a better understanding of the subject, he was very kind with me throughout this work and devoted much of his precious time for meticulous guidance that made this review possible.

I will stand long with **Dr. Yasser Gaber Ali**; lecturer of Nuclear Medicine, South Egypt Cancer Institute, Assiut University, who was the real owner of the idea of this work. I considered him my spiritual father and really no words could express his actual stature, he taught me a lot on both an academic and a personal level. Without his continuous patience and support this work would have never been complete, for which my mere expression of thanks would not be enough.

Distinctive thanks to my colleagues at nuclear medicine department, Cairo University for their cooperation and valuable advices.

Last but by no means least, I express my sincere gratitude to my family for their spiritual support, patience and enthusiastic encouragement.

Maha Khalil

١

ABSTRACT

Objectives: To evaluate the diagnostic performance of ^{99m}Tc-MDP bone scintigraphy using SPECT/CT in comparison to diffusion-weighted (DW) MRI in the characterization of equivocal osseous lesions detected on planar bone scintigraphy.

Methods: This ongoing prospective study recruited 31 cancer patients referred for bone scintigraphy (staging/restaging/follow-up) with their planar whole body scan showing equivocal osseous lesion. Every patient further underwent SPECT/CT& DW-MRI within two weeks. Studies were read independently by two experienced nuclear medicine physicians and one experienced radiologist on a 5-point score: (score 1 = benign, score 2 = likely benign, score 3 = equivocal, score 4 = likely malignant and score 5 = malignant). The final diagnosis of disease status was made on the basis of subsequent clinical/imaging follow-up for at least 6 months.

Results: Of the 31 patients evaluated, only 9 (29%) proved to have osseous metastases, 20 (64%) were disease free and 2 (6%) were excluded from the study. SPECT/CT & DW-MRI had sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 67% vs. 67%, 90% vs. 75%, 86% vs. 83%, 75% vs. 55% and 83% vs. 72%; respectively. Both modalities were true positive in 4, true negative in 14, false positive in 1 and false negative in 1 patient(s). No statistically significant difference noted in sensitivity, specificity or accuracy.

Conclusions: Bone scintigraphy using SPECT/CT is not superior to DW-MRI in characterization of equivocal osseous lesions detected on planar scans. Further work is ongoing to identify the exact role of each modality in different tumor types.

LIST OF CONTENTS

ABBREVIATIONSIII
LIST OF TABLESVI
LIST OF FIGURESVI
INTRODUCTION1
AIM OF THE WORK3
Review of Literature
CHAPTER1: PATHOPHYSIOLOGICAL CONSIDERATIONS (METASTATIC BONE DISEASE)4
CHAPTER 2:IMAGING OF METASTATIC BONE DISEASE14
CHAPTER 3:BONE SCINTIGRAPHY15
CHAPTER4:SINGLE-PHOTON EMISSION COMPUTED
TOMOGRAPHY (SPECT/CT)19
CHAPTER 5:MAGNETIC RESONANCE DIFFUSION WEIGHTED
IMAGING (DW-MRI)24
PATIENTS AND METHODS32
RESULTS43
CASE PRESENTATION52
DISCUSSION71
SUMMARY AND CONCLUSION77
REFERENCES78

ABBREVIATIONS

ADC	Apparent diffusion coefficient
AUC	Area under the curve
BS	Bone scintigraphy
СТ	Computed tomography
CTDIvol	Dose parameters volume weighted CT dose index
CTR	Chemotherapy
DLP	Dose length product
DV	Dorsal vertebra
DWI	Diffusion weighted imaging
DWI-EP	Diffusion weighted imaging echo planar
DW-MRI	Diffusion weighted magnetic resonance imaging
FOV	Field of view
FN	False negative
FN	False positive
HASTE	Half-Fourier acquisition single shot turbo spin echo
Kev	Kilo-electron volt
kVp	Peak kilo voltage
MAs	Milli ambers
MBq	Mega Becquerel
mCi	Millicurie
MSEPI	Multi-shot echo-planar imaging
msv	Milli sievert
MTC	Medullary thyroid cancer
NaTco4	Sodium pertecntate

NPV	Negative predictive value
PPV	Positive predictive value
RARE	Rapid acquisition with relaxation enhancement
ROC	Receiver operating characteristic
ROI	Region of interest
RTH	Radiotherapy
SNR	Single to noise ratio
SPECT	Single photon emission computed tomography
SS-EPI	Single shot echo planar imaging
SS-FSE	Single shot fast spin echo
STIR	Short-tau inversion recovery
Т	Tesla
T1 WI	T1 weighted image
T2 WI	T2 weighted image
Tc ^{99m} -MDP	Technetium-99m methylene diphosphonate
TIRM	Turbo inversion recovery magnitude
TN	True negative
TP	True positive
TSE	Turbo spin echo

LIST OF TABLES

Table	Title	Page No.
Table 1	Radiation Absorbed Dose from Tc-99m MDP	17
Table 2	Common Artifacts in Bone Scintigraphy	17
Table 3	Causes of Artifacts on SPECT/CT	22
Table 4	Conversion Factors for Calculating Effective Dose	38
Table 5	Demographic and Clinical Characters of the Study population	43
Table 6	Patient-based diagnosis of confirmed bone lesions	44
Table 7	Diagnostic performances of SPECT/CT and DW-MRI from 31 studies in cancer patients.	45

LIST OF FIGURES

Figure	Title	Page
Figure		No.
Fig 1	Events required for metastatic spread	4
Fig 2	Batson's plexus	5
Fig 3	Steps involved in tumor cell metastasis from a primary site to the skeleton	7
Fig 4	Distribution of bone metastases according to age	10
Fig 5	Chemical Structures of Pyrophosphate and Diphosphonate	16
Fig 6	Diffusion of water molecules	26
Fig 7	Study design of our work	34
Fig 8	Gamma Camera; Siemens: Symbia T SPECT/CT	37
Fig 9	1.5-T MR Camera	40
Fig 10	ROC curve showing the area under the curve (AUC) for SPECT/CT and DW-MRI	46
Fig 11	ROC curve of best ADC cutoff value differentiating metastasis from benign lesions	47
Fig 12	Box plot showing the difference between the mean ADC of different pathologic groups	49
Fig 13	Bar chart shows that T1 pattern has no significant statistical value with the final impression	49
Fig 14	Bar chart shows that T2 pattern has no significant statistical value with the final impression	50

Fig 15	Bar chart shows that STIR pattern has no	50
	significant statistical value with the final	
	impression	
Fig 16	Bar chart shows the frequency of benign and	51
	malignant lesion according to soft tissue	
	component	

Introduction

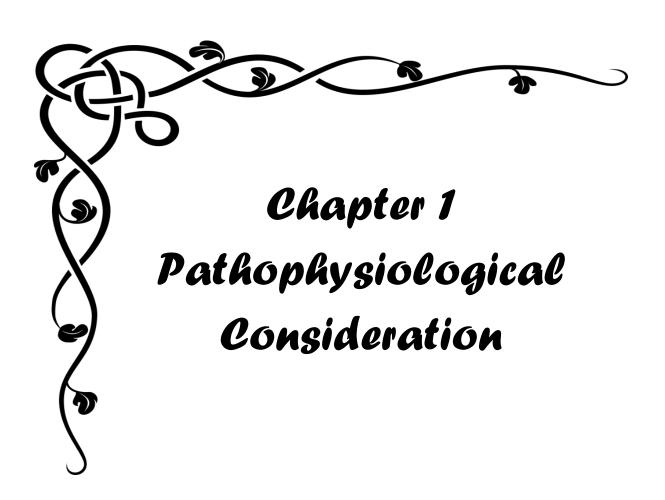
Bone is one of the most common sites of distant metastasis in cancer patients, apart from the lung and liver[1]. Most bone metastases result from hematogenous dissemination of cancer cells. Various anatomical and functional imaging modalities are used for detecting and characterizing bone metastasis. Among them, bone scintigraphy, commonly performed with ^{99m}technetium methylene diphosphonate (^{99m}Tc-MDP), is a widely used procedure that provides a whole-body skeletal survey at a relatively low cost and is usually the initial imaging modality for the assessment of bone metastases[2].

Numerous reports emphasize the high sensitivity of bone scintigraphy in the diagnosis of osseous metastases. However, bone scintigraphy lacks specificity due to the known increased blood flow and metabolic reaction of the bone to a variety of disease processes, including osteoarthritis, trauma, and inflammation[3].

Recently, state of the art hybrid SPECT-CT systems that have become available combine both tomographic scintigraphy and CT, producing a unique combination of the functional and anatomical sets of data[4]. These systems allow the field of view of the CT scan to be adapted to line up with the SPECT findings. SPECT-CT has been shown to be useful for various indications and for different regions[5].

Diffusion-weighted MRI (DWI) is another rapidly evolving functional imaging modality that can be used to evaluate oncologic and non-oncologic lesions throughout the body. DWI is sensitive to the random (Brownian) motion of water molecules. In biologic tissue, the presence of impeding barriers (e.g., cell membranes, fibers, and

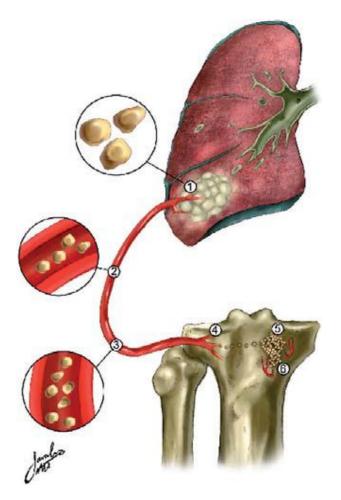
Introduction Page 1


macromolecules) interferes with the free displacement (diffusion) of water molecules. Consequently, the signal intensity in DWI depends on the separation and permeability of these impeding boundaries[6]. Pathologic processes that alter the physical nature of the restricting barriers in biologic tissue affect the diffusivity of the water molecules, which can be visualized and quantified using DWI. Since tissue water movements are not free but impeded, tissue diffusivity is often termed the apparent diffusion coefficient (ADC; units: $\mu m^2 / s$ or $\times 10^{-3}$ mm²/s). DWI has been extensively evaluated for its role in the assessment of vertebral compression fractures, specifically for differentiating between benign and malignant causes[6].

Introduction Page 2

Aim of The Work

The aim of this prospective study is to compare between SPECT/CT and DW-MRI in characterization of equivocal osseous lesions detected by conventional planar bone scan.


Aim Of The Work Page 3

Metastatic Bone Disease

Metastasis means "the transfer of disease from one organ or part to another not directly connected with it"[7]. In general, several events are required for the metastatic spread of tumors (**Fig.1**). The sequence of these events is as follows:

- 1. Neoplastic cells separate from primary tumors.
- 2. They gain access to an efficient lymphatic channel or blood capillary.
- 3. They survive during transport.
- 4. They attach to the endothelium of a distant capillary bed.
- 5. They exit from the vessel.
- 6. They develop a supporting blood supply for the cells at the new site.

- (Fig. 1) Events required for metastatic spread:
- 1. Separation of cells from primary
- 2. Access of separated cells to an efficient lymph channel or blood cap;
- 3. Survival of cells during transport;
- 4. Successful attachment of cells to the endothelium of a distant cap bed;
- 5. Exit of cells from vessel at new site.
- 6. Successful development of a supporting blood supply[7]