

SYNTHESIS, CHARACTERIZATION AND BIOCIDAL EFFECT OF COPPER NANOPARTICLES USING L-ASCORBIC ACID AS A REDUCING AND CAPPING AGENT

By

Younus Rashid Taha Al-Mashhadani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

SYNTHESIS, CHARACTERIZATION AND BIOCIDAL EFFECT OF COPPER NANOPARTICLES USING L-ASCORBIC ACID AS A REDUCING AND CAPPING AGENT

By

Younus Rashid Taha Al-Mashhadani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Associate Prof. Dr.

Prof. Dr.

Ahmed Soliman Mohamed Fawzi

Ibrahim Mohamed Ismail

Associate Professor Chemical Engineering Department Faculty of Engineering, Cairo University Professor of Renewable Energy Zewail City of Science and Technology University

SYNTHESIS, CHARACTERIZATION AND BIOCIDAL EFFECT OF COPPER NANOPARTICLES USING L-ASCORBIC ACID AS A REDUCING AND CAPPING AGENT

By

Younus Rashid Taha Al-Mashhadani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the

Examining Committee

Associate Prof. Dr. Ahmed Soliman Mohamed Fawzi

Thesis Main Advisor

Prof. Dr. Omar El-Farouk Abdelsalam Hassan

Internal Examiner

Prof. Dr. Ayman Abdel-Magid Ahmed El-Shibiny

Biomedical Science, Zewail City of Science and Technology

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer:** Younus Rashid Taha Al-Mashhadani

Date of Birth: 20 / 2 / 1980

Nationality: IRAQI

E-mail: eng.younis2005@yahoo.com

Phone: 01153143094

Address: Giza- Cairo- Egypt

Registration Date: 1 / 10 / 2014 **Awarding Date:** / / 2017

Degree: Master of Science **Department:** Chemical Engineering

Supervisors: Ass. Prof. Dr. Ahmed Soliman Mohamed Fawzi

Prof. Dr. Ibrahim Mohamed Ismail

Examiners: Prof. Dr. Ayman Abdel-Magid Ahmed El-Shibiny

External Examiner, Biomedical Science, Zewail City of

Science and Technology

Prof. Dr. Omar El-Farouk Abdelsalam Hassan

Internal Examiner

Associate Prof. Dr. Ahmed Soliman Mohamed Fawzi

Thesis Main Advisor

Title of Thesis:

Synthesis, characterization and biocidal effect of copper nanoparticles using L-ascorbic acid as a reducing and capping agent

Key Words:

Metallic nanoparticles, Copper Nanoparticles, Chemical reduction, Antibacterial, L-ascorbic acid

Summary:

Chemical reduction method is one of chemical techniques for synthesis nanoparticles. It has been used to reduce metals such as copper by using copper salts with reducing agents. In this work, copper nanoparticles were synthesized by reduction of copper salt (copper chloride dehydrate; CuCl₂.2H₂O or copper sulfate pentahydrate; CuSO₄.5H₂O) by using L-ascorbic acid as reducing and capping agent at the same time. This thesis presents a study of factors affecting copper nanoparticles synthesis using L-ascorbic acid, where the factors selected are reaction time, molar ratio of L-ascorbic acid to copper salt. Dynamic Light Scattering (DLS) used for measuring the size of nanoparticles and size distribution of these nanoparticles while Transmission Electron Microscopy (TEM) was used to provide information about morphology and crystallographic structure of copper nanoparticles as well as the size of nanoparticles.

Antibacterial activity of the copper nanoparticles solutions was examined against pathogenic organisms such as Gram positive bacteria, Gram negative bacteria and fungi. The Minimal Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and inhibition zones were determined. The results obtained from this work in antimicrobial field confirm that copper nanoparticles have inhibitory effects and fatal on bacterial and fungal strains selected.

(And not absent from your Lord is any [part] of an atom's weight within the earth or within the heaven or [anything] smaller than that or greater but that it is in a clear register)

Sorah Yunus (61)

ACKNOWLEDGMENTS

First of all, I must gratefully thanks to the mighty Allah for facilitating this research.

I would like to express my sincere gratitude to my Advisors, **Associate Prof. Dr. Ahmed Soliman Mohamed Fawzi** and **Prof. Dr. Ibrahim Mohamed Ismail**,
for the continuous support and encouragement, their guidance during my research and the writing of this thesis.

Besides my Advisors, I would like to thank **Dr. Ahmed Ahmed Refaat Hussein** for his support and co-advising within writing this research.

My sincere thanks also go the rest of my thesis examining committee: **Prof. Dr. Ayman Abdel-Magid Ahmed El-Shibiny** and **Prof. Dr. Omar El-Farouk Abdelsalam Hassan**, for their encouragement, and insightful comments.

I take this opportunity to thank all the teaching staff members in chemical engineering department- Cairo University and Tikrit University.

Also I wish to extend my sincere gratitude and words of appreciation towards those, who directly or indirectly helped me during the pursuit of this study.

DEDICATION

This Thesis manuscript is dedicated to my parents and my grandmother (May Allah have mercy on them). Their love and unwavering support has always been the bedrock upon which every worthwhile achievement in my life has been built.

love and affection to all my family members particularly *my wonderful wife* who encouraged and strengthened me in all my life and my sons *Maath*, *Anas* and my daughter *Malak* for their love, affection, care, concern in all my endeavors without whose help this study could have ever seen in the light of world.

Many thanks are to the rest of my family, my brothers and all my relatives. Thank you for helping in all the ways that you did, to your guidance and words of encouragement.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	III
DEDICATION	IV
TABLE OF CONTENTS	V
LIST OF TABLES	VIII
LIST OF FIGURS	IX
ABSTRACT	XI
Chapter one: Introduction	1
1-1 Background	1
1-2 Nanotechnology	2
1-3 Nanomaterials Classification	3
1-3.1 Dimensionalities	3
1-3.2 Nanomaterials Morphology	4
1-3.3 Nanomaterials Composition	4
1-3.4 Nanomaterials Uniformity and Agglomeration State	5
1-4 The Merits of Nanoparticles	5
1-5 Metal Nanoparticles	6
Chapter two: Literature Review	8
2-1 Introduction	8
2-2 Applications of Nanotechnology	8
2-2.1 Nanotechnology in Biotechnology and Medicine	8
2-2.2 Nanotechnology in Petroleum Industries	12
2-2.3 Nanotechnology in Environmental Sector	13
2-2.4 Nanotechnology in the Energy Sector	15
2-2.5 Nanotechnology in Other Specific Fields	18
2-2.5.1 Catalysis	18
2-2.5.2 Food and Agriculture	18
2-2.5.3 Sensors	19
2-2.5.4 Construction	19
2-2.5.5 Paints	20
2-2.5.6 Displays	20

2-2.5.7 Batteries	21
2-2.5.8 Cosmetics and Sun-Screens	21
2-2.5.9 Other Applications	21
2-3 Synthesis Techniques	21
2-3.1 Top-Down Technique	22
2-3.2 Bottom-Up Technique	22
2-4 Synthesis Methods of Copper Nanoparticles	23
2-4.1 Physical Methods	24
2-4.1.1 Mechanical/Ball Milling Method	24
2-4.1.2 Pulse Laser Ablation Method	25
2-4.1.3 Pulsed Wire Discharge (PWD) Method	26
2-4.2 Biological Methods	27
2-4.2.1 Synthesis of nanoparticles using Microorganisms	27
2-4.2.2 Synthesis of nanoparticles using Plants	28
2-4.3 Chemical Methods	29
2-4.3.1 Microemulsion/Colloidal Method	29
2-4.3.2 Sonochemical Method	32
2-4.3.3 Microwave Method	34
2-4.3.4 Electrochemical Method	34
2-4.3.5 Solvothermal Decomposition Method	36
2-4.3.6 Chemical Reduction Method	37
2-5 Mechanism of Reaction	42
2-6 Stability of Copper Nanoparticles	43
2-7 Characterization Techniques	44
2-7.1 Some of Characterization Techniques	44
2-8 Applications of Copper Nanoparticles	49
2-8.1 Application of Copper Nanoparticles as Antimicrobial Agent	50
2-8.1.1 History of Copper as Antimicrobial	52
2-8.1.2 Effect of Copper Nanoparticles in Microorganisms	53
2-9 Overview of Bacterial and Fungal Strains used in this work	55
Chapter three: Experimental Work	58
3-1 Introduction	58
3-2 Materials and Methods	58

3-2.1 Chemical Materials	58
3-2.2 Methods	59
3-2.2.1 Study the Effect of Reaction Time	59
3-2.2.2 Study the Effect of Molar Ratio	60
3-3 Characterization of Copper Nanoparticles	62
3-3.1 Dynamic Light Scattering (DLS)	62
3-3.2 Transmission Electron Microscopy (TEM)	62
3-4 Antimicrobial Activity Studies	62
3-4.1 Bacterial and Fungal Strains	62
3-4.2 Determination of (MIC)	63
3-4.3 Determination of (MBC)	63
Chapter four: Results and Discussion	64
4-1 Preparation of Copper Nanoparticles	64
4-2 Effect of Reaction Time	66
4-2.1 Dynamic Light Scattering (DLS)	67
4-2.2 Transmission Electron Microscopy (TEM)	71
4-3 Effect of Molar Ratio	72
4-3.1 In Case of Using (CuCl ₂ .2H ₂ O)	72
4-3.1.1 Dynamic Light Scattering (DLS)	72
4-3.1.2 Transmission Electron Microscopy (TEM)	77
4-3.2 In Case of Using (CuSO ₄ .5H ₂ O)	78
4-3.2.1 Transmission Electron Microscopy (TEM)	78
4-4 Antimicrobial Studies	80
4-4. 1 Effect of the Particles Size by Using Different Sizes of Copper Na	anoparticles
Produced From Same Copper Salt (CuCl ₂ .2H ₂ O)	80
4-4. 2 Effect of Copper Nanoparticles by Using Two Different Types of (CuCl ₂ .2H ₂ O and CuSO ₄ .5H ₂ O)	
Chapter five: Conclusion and Recommendations	89
REFERANCES	91

LIST OF TABLES

Table (1): Summarized of various solvents, Cu precursor, reducing and stabilizing
agent by microemulsion method
Table (2): The conditions for pulse sonoelectrochemical synthesis of copper
nanoparticles using 20 KHz titanium horn as working electrode33
Table (3): Electrochemical methods for copper nanoparticles synthesis 36
Table (4): Synthesis methods of copper nanoparticles by chemical reduction38
Table (5): conditions of copper nanoparticles synthesis by chemical reduction
technique
Table (6): Applications of copper nanoparticles
Table (7): Illustrates the conditions of experiments with different time of reaction59
Table (8): Illustrates conditions of experiments with various molar ratios of (L-ascorbic)
acid to CuCl ₂ .2H ₂ O)60
Table (9): Shows the conditions of experiments by change the concentration of copper
salt (CuCl ₂ .2H ₂ O), compare with experiment (6) in table (7)60
Table (10): Illustrates conditions of experiments with various molar ratios of $(L$ -
ascorbic acid to CuSO ₄ .5H ₂ O)61
Table (11): Shows effect of reaction time on size of copper nanoparticles
Table (12): Illustrates conditions of experiments with different molar ratio of reactants
(L-ascorbic acid to $CuCl_2.2H_2O$) and results by Dynamic Light Scattering (DLS)72
Table (13): Shows results of Transmission Electron Microscopy (TEM) when the
concentration of copper salt (CuCl ₂ .2H ₂ O) changed77
Table (14): Shows the conditions of Cu nanoparticles synthesis with various molar
ratios (L-ascorbic acid to CuSO ₄ .5H ₂ O) and the average size of Cu NPs78
Table (15): Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
Concentration (MBC) and inhibition zone against each strain in case of different
particles sizes85
Table (16): Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
Concentration (MBC) and inhibition zone against each strain in case of using different
copper salts in synthesis process

LIST OF FIGURS

Figure (1): Dimensions of nanomaterials	4
Figure (2): Classification of nanostructured materials according to their dimension	ally,
morphology, composition, and uniformity & agglomeration state.	5
Figure (3): Total surface area increases as you cut the block into smaller pieces, but	it the
total volume stays constant	6
Figure (4): Various different scales of objects	9
Figure (5): Nanotechnology in Medicine	11
Figure (6): Heavy oil upgrading and recovery	13
Figure (7): Typical structures of nanomaterials with potential applications for	
adsorption: (a) dendrimer (b) fullerene (c) zeolite (d) carbon nanotube	14
Figure (8): Lithium- ion batteries, (b) Solar cells	16
Figure (9): Hydrogen fuel cell	17
Figure (10): Schematic representation of the formation of Nanostructures	23
Figure(11): Ball milling method	25
Figure (12): Pulse laser ablation process.	26
Figure (13): Synthesis of Cu nanoparticles microemulsion technique	30
Figure (14): Reaction mechanism via chemical reduction of the copper functionali	zed
AOT surfactant, AOT = Sodium bis (2-ethylhexyl) sulfosuccinate	31
Figure (15): Sonochemical process.	32
Figure (16): Electrochemical Synthesis of Stabilized Metal	35
Figure (17): Electrochemical process.	35
Figure (18): The reduction reaction for the formation of copper nanoparticles	42
Figure (19): Irreversible hydrolysis of dehydroascorbic acid	43
Figure (20): Schematic of Dynamic Light Scattering (DLS)	46
Figure (21): Dynamic Light Scattering (DLS) device (Malvern)	47
Figure (22): Transmission Electron Microscopy (TEM)	48
Figure (23): Things made of copper	53
Figure (24): Type of cell wall in bacteria	54
Figure (25): Illustrates possible mechanisms of the killing process	54
Figure (26): photos of copper nanoparticles, (a) before, and (b) after four months of	of
storage	65

Figure (27): Shows the particles size decreases with increasing time of reaction67
Figure (28): Dynamic Light Scattering (DLS) results with histogram show size
distribution of copper nanoparticles with different time of reaction70
Figure (29): Transmission Electron Microscopy (TEM) images for copper
nanoparticles with different reaction time
Figure (30): Histogram of copper nanoparticles size with different molar ratio of L-
ascorbic acid to CuCl ₂ .2H ₂ O
Figure (31): Results of Dynamic Light Scattering (DLS) and histogram of copper
nanoparticles with different molar ratio
Figure (32): Show TEM images of copper nanoparticles with various molar ratios (L-
ascorbic acid to CuCl ₂ .2H ₂ O)77
Figure (33): Show Transmission electron microscopy (TEM) images of synthesized
copper nanoparticles with different molar ratio of (L-ascorbic acid to CuSO4.5H2O).78
Figure (34): Antimicrobial activity of copper nano particles on Bacterial and Fungal
Strains with various concentrations of Cu NPs solution

ABSTRACT

A chemical reduction method is one of methods which used to produce copper nanoparticles. In this method, copper salt such as (Copper (II) chloride dihydrate; CuCl₂.2H₂O and copper (II) sulfate pentahydrate; CuSO₄.5H₂O) were used as precursor. L-ascorbic acid was used as a reducing and capping agent with copper salt.

The parameters such as reaction time and molar ratio of L-ascorbic acid to copper salt were changed in this work to study their effect on size of particles. The size of particles and size distribution were measured by Dynamic Light Scattering (DLS) while the morphology of copper nanoparticles was determined by Transmission Electron Microscopy (TEM).

The results showed that increasing time of reaction and increasing the molar ratio of L-ascorbic acid to copper salt decrease the copper nanoparticles size. The copper nanoparticles with size less than 12 nm and spherical in shape were prepared using the chemical reduction method. The copper nanoparticles colloidal solution was stored in ambient conditions after preparation for more than four months but no any change was showed. The synthesis process using of L-ascorbic acid has the advantages such as nontoxic, inexpensive, use simple equipment under ambient conditions and environmental friendly.

Antimicrobial tests of copper nanoparticles were carried out on various types of bacteria (gram positive bacteria and gram negative bacteria) and fungi. The prepared aqueous solutions of copper nanoparticles were diluted to different concentrations and $10~\mu l$ of each dilution was spotted on the overlay of each bacterial culture by impregnating the as-synthesized copper nanoparticles using micropipette on paper discs.

The Minimum Inhibitory Concentration (MIC) is the lowest concentration for an antimicrobial agent which inhibits a microorganism growth. The zone of inhibition was measured after 24 h of incubation.

The Minimum Bactericidal Concentration (MBC) is defined as the lowest concentration for an antimicrobial agent that will kill 99.9 % of a microorganism.

The Minimum Bactericidal Concentration (MBC) was measured after completion of Minimum Inhibitory Concentration (MIC) test.

The results showed that the copper nanoparticles exhibited antimicrobial activity and that the lower the particles, the higher the biocidal effect on both bacteria and fungi.

Keywords: Metallic nanoparticles, Copper Nanoparticles, Chemical reduction, Antibacterial, L-ascorbic acid

Chapter one: Introduction

1-1 Background

The concept of nanotechnology is attributed to Richard Feynman (American physicist, 1959). He was the first scientist invited to discuss nanoscience in his famous lecture "There's Plenty of Room at the Bottom" Richard highlighted the importance of controlling and manipulating on a small scale and nanotechnology [1].

The nanotechnology idea started in (1974) when the word "nanotechnology" was used by Norio Tanigushi for the first once in a technology production paper to describe precision machining of materials to within atomic-scale dimensional tolerances [2]. In (1977) the concept of Molecular Nanotechnology was put forward by Kim Eric Drexler [3]. The scanning tunneling microscope used in (1981) to help researchers for seeing individual atoms which invented by Binnig and Rohrer. Also in (1981), the first research on engineering of molecular was issued.

In (1985), Fullerenes or called Bucky-balls were one of the first nanoparticles discovered by Richard Smalley, Harry Kroto and Robert Curl.

Bucky-balls are consisted of carbon atoms joined to three another carbon atoms by covalent bonds. Therefore, the atoms of carbon are connected in the same layout of hexagons and pentagons in the form of a hollow sphere, ellipsoid or tube.

The most common Bucky-ball consists of 60 atom of carbon and it is at times called C_{60} . There are other sizes of Bucky-balls such as a balls consisting of 20 atom of carbon to a balls consisting of over than 100 atom of carbon. Bucky-balls very strong because of the covalent bonds between their atoms and the carbon atoms easily form covalent bonds with a variety of other atoms. Bucky-balls are used in composites to enhance material. Bucky-balls have the interesting electrical property of being very good electron acceptors, which means they accept freed electrons from other materials. This property is important, for example, in increasing the efficiency of solar cells in transforming sunlight into electricity.

In (1989), scientists at the IBM Research Center, California, used 35individual xenon atoms to spell out the IBM logo. They further proved how nanoparticles can be manipulated and applied in nanotechnology [2].

In (1995), the term nanofluids were coined by Choi and other researchers, have shown that it is possible to break down the limits of conventional solid particle suspensions by conceiving the concept of nanoparticle fluid suspensions. These nano particle fluid suspensions are called nanofluids, obtained by dispersing nanometer sized particles in a conventional base fluid like water, oil, ethylene glycol, etc. The thermal properties of nanofluids are better than those of their base fluids [4].