

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

IMMUNOHISTOCHEMICAL NUCLEAR STAINING FOR PSB , PCNA , AND KI-67 IN DIFFERENT HISTOLOGIC VARIANTS OF BASAL CELL CARCINOMA

Thesis

Submitted for partial fulfillment of the master degree

of Dermatology and Oenercology

c..EH}.

EI.Y OP

Presented by

Amina Mohmed Abd El-Rahman

M.B., B. Ch.

Supervisiors

Prof. Dr.

Iman Hamed El-Maadawy

Prof of Dermatology and Venereology

Faculty of Medicine

Tanta University

Prof. Dr.

Afaf Mohamed El-Shafaey

- Abeer Aba El-Hakam Hodeib

Assistant Professor of Pathology

Lecturer of De matology and Venereology

Faculty of Medicine

Faculty of Medicine

Tanta University

Tanta University

Faculty of Medicine Tanta University 2004

« قَالُوا سُبُحَانَكَ لِأَ عَلِم لَنَا إِلاَّ مَا عَلَمْتَنَا إِنْكَ أَنْتَ الْحَلِيمُ الْحَكِيمُ »

صَدَق الله العَظِيمُ (٣٢ / البقرة)

ACKNOWLEDGEMENT

First and above all great thanks to ALLAH

I would like to express my sincere gratitude and deepest appreciation to **Prof.Dr. Iman Hamed El-Maadawy,** Professor of dermatology and Venereology Faculty of Medicine, Tanta University for giving me the privilege to work under her generous supervision, valuable suggestion, continuous guidance, and keen interest throughout every step in this work. Her remarks, expert supervision, criticism, and great experience have added much to my knowledge. Really she is a noble personality.

I'm deeply grateful to **Prof.Dr. Afaf Mohmamed El-Shafaey**, Assistant Professor of pathology, Faculty of Medicine, Tanta University, who was very kind saving no time or effort in helping me as her valuable comments, constructive instructions, and expert supervision. I will remain always remembering her kind help and heartful support.

My sincere gratitude and heartful thanks for **Dr. Abeer Abd El-Hakem Hodeib** Lecturer of Dermatology and Venereology, Faculty of Medicine, Tanta University, for her remarkable effort, great cooperation. She never declined from offering her experience, skills to accomplish this work.

I would never forget to express my deepest warm feeling and indebtness to all our staff members of our department.

Finally all my heartful thanks to my collegues and all members of our Department.

Special debt for all patients of BCCs wishing them good spirits.

Contents

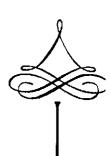
INTRODUCTION	1
AIM OF THE WORK	2
REVIEW:	
Chapter I : BCC	3
Chapter II : P53	40
Chapter III: PCNA	54
Chapter IV: Ki-67	61
PATIENTS AND METHODS	67
<i>RESULTS</i>	73
DISCUSSION	113
SUMMARY	127
REFERENCES	131
ARABIC SUMMARY	

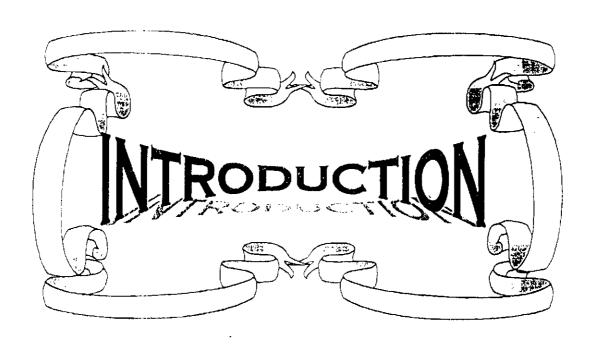
List of figures

No	Title	Page No.
(1)	Signaling pathway associated with BCC	8
(2)	Structure of p53 gene	41
(3)	Representation of p53 in man	42
(4)	Adaptive response of p53 to different cellular stresses	45
(5)	Normal pathway and function of p53	46
(6)	Causes of inactivation of p53 at the gene or protein	48
İ	level	
(7)	P53 in neoplasia	51
(8)	Position of PCNA in the cell cycle	55
(9)	Expression of p53 in different subtypes of BCCs	94
(9a)	Expression of P53 in aggressive and non aggressive	94
	BCC and in recurrent and primary BCC.	_
(10)	Expression of PCNA among different subtypes of	95
	BCCs	
(10a)	Intensity of PCNA + ve cells in aggressive and non	95
	aggressive BCC and in recurrent and primary BCC.	ì !
(11)	Expression of ki-67 among different subtypes of BCCs	96
(11a)	Intensity of Ki-67 + ve cells in aggressive and non	96
	aggressive BCC and in recurrent and primary BCC.	

List of tables

NO	Title	Page No.
(1)	Composition of BCC island infiltrate	18
(2)	Targets of the wild p53 tumor suppressor gene	44
(3)	Sex variation in different subtypes of studied BCCs	83
(4)	Age variation among patients with studied BCCs	83
(5)	Clinical types of BCCs among different histologic	84
	subtypes	
(6)	Relation between site of BCCs and histologic subtypes	85
(7)	Relation between site and clinical types of BCCs	86
(8)	Duration of different subtypes of studied BCCs	87
(9)	Expression of p53, PCNA, ki-67 in BCCs	88
(10)	Percentage of p53, PCNA, ki-67 positive cells in BCCs	89
(11)	Expression of p53, PCNA,ki-67 in aggressive and non	90
	aggressive BCCs	
(12)	Percentage of p53, PCNA, ki-67 positive cells in	91
	aggressive and non aggressive BCCs	
(13)	Expression of p53, PCNA, ki-67 in primary and	92
	recurrent BCCs	
(14)	Percentage of p53, PCNA, ki-67 positive cells in	93
	primary and recurrent BCCs	


List of photos


No	Title	Page No.
(1)	Superficial BCC	97
(2)	Superficial BCC (unusual site)	97
(3)	Nodular BCC	98
(4)	Typical rodent ulcer	98
(5)	Atypical rodent ulcer	99
(6)	Morphoeic BCC	99
(7)	Infiltrative BCC	100
(8)	Metatypical BCC	100
(9)	- ve p53 immune stain in normal skin	101
(10)	+ ve PCNA immune stain in normal skin	101
(11)	+ ve ki-67 immune stain in normal skin	102
(12)	Superficial BCC (H&E)	102
(13)	Superficial BCC showing – ve p53 immune stain	103
(14)	Superficial BCC showing + ve P53 immune stain	103
(15)	Superficial BCC showing + ve PCNA immune stain	104
(16)	Superficial BCC showing + ki-67 immune stain	104
(17)	Nodular BCC(H&E)	105
(18)	Nodular BCC showing + ve p53 immune stain	105
(19)	Nodular BCC showing + ve PCNA immune stain	106
(20)	Nodular BCC showing + ve ki-67 immune stain	106
(21)	Morphoeic BCC(H&E)	107
(22)	Morphoeic BCC showing + ve p53 immune stain	107
(23)	Morphoeic BCC showing + ve PCNA immune stain	108
(24)	Morphoeic BCC showing + ve ki-67 immune stain	108
(25)	Infiltrative BCC(H&E)	109
(26)	Infiltrative BCC showing + p53 immune stain	109

List of abbreviations

Basal cell carcinoma **BCC** Tumor suppressor gene TSG Proliferating cell nuclear antigen **PCNA** Nevoid basal cell carcinoma syndrome **NBCCS** Xeroderma pigmentosum XP Ultraviolet radiation UVR Hedgehog patched pathway Hh Wild type p53 Wt p53 Non steroidal anti infilammatory drug NSAID Psoralen+ ultraviolet A radiation **PUVA** PG Prostaglandin Transforming growth factor beta TGFβ Interleukin IL Squamous cell carcinoma SCC Desmoplastic trichoepithelioma DTE Epithelial membrane antigen **EMA** Basaloid follicular hamartoma **BFH** Tumor suppressor gene p63 **TP63** Tumor suppressor gene p73 **TP73** Single strand confirmation polymorphism SSCP Superficial BCC **SBCCs** Nodular BCC **NBCCs** Monoclonal antibody MAB

Introduction

Basal cell carcinoma (BCC) is a slowly growing, locally invasive malignant epidermal skin tumor which mainly affect Caucasian population. It is locally malignant carcinoma this stand for local invasiveness of the tumor tissue, rarity of metastasis, and mortality. It is considered to be problematic due to their frequent localization on the face and their destructive growth.⁽¹⁾

BCC is a multifactorial disease with a complex interplay of genetic, environmental, lifestyle risk factors, and others. Exposure to UV radiation particularly in childhood play a significant role in tumor development and can be considered the primary established risk factor for BCC.⁽¹⁾

Other alternative terms for BCC include basal cell epithelioma, basilioma and rodent ulcer but because of its destructive potential and small metastatic potential, BCC is the most accurate term. (2) Genes play a critical role in the origin of cancer in human beings. It is becoming clear that cancer arises in human beings because of the accumulation of mutations into two major classes of genes; the protooncogenes and tumor suppressor genes. (3) The best known and most intensely studied of the tumor suppressor genes is the P53 gene. (4) Alternation in the structure of P53 gene represents one of the most common genetic changes associated with BCC. (5)

The proliferative activity of tumors is considered to provide both diagnostic and prognostic information and has become an integrative element for several grading systems. Various sophisticated ways to determine proliferation have been reported. (6)