

Ain Shams University Faculty of Science Chemistry Department

Treatment of Industrial Wastewater from Some Industries Discharging in Ismailia Canal in Qalubia Governorate

Thesis Submitted for Partial Fulfillment of the Requirements for The Degree of Ph.D, in Inorganic Chemistry

Submitted by Mona Soliman Sayed Soliman M. Sc., Chemistry, 2012

Supervised by

Prof. Dr. Salah Abdel-Ghany Abo El-Enein (D. Sc.)

Prof. of Physical Chemistry, Faculty of Science
Ain Shams University

Prof. Dr. Mohamed Said Attia Moustafa

Prof. of Inorganic and Analytical Chemistry, Faculty of Science
Ain Shams University

Prof. Dr. Gehad Genidy Mohamed

Prof. of Inorganic and Analytical Chemistry, Faculty of Science Cairo University

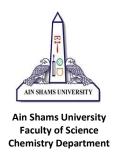
Prof. Dr. Maha Mahmoud Ali

Prof. of Inorganic and Analytical Chemistry

Central Laboratory for Environmental Quality Monitoring

National Water Research Center

Treatment of Industrial Wastewater from Some Industries Discharging in Ismailia Canal in Qalubia Governorate


By

Mona Soliman Sayed Soliman

M.Sc. Degree of Inorganic Chemistry, 2012 Faculty of Science – Cairo University

A Thesis Submitted to Faculty of Science
In Partial Fulfillment of the Requirements for
The Degree of Doctor of Philosophy
In Inorganic Chemistry

Chemistry Department
Faculty of Science
Ain Shams University

Treatment of Industrial Wastewater from Some Industries Discharging in Ismailia Canal in Qalubia Governorate.

Presented by

Mona Soliman Sayed Soliman

Supervised by

Prof. Dr. Salah A. Abo El-Enein.

Prof. Dr. Mohamed S. Attia.

Prof. Dr. Gehad G. Mohamed.

Prof. Dr. Maha M. Ali.

Prof. Dr. Ibrahim H. A. Badr

Chairman of Chemistry Department

DEDICATION

I dedicate my dissertation work to my family and many friends.

A special feeling of gratitude to my loving Father (God have mercy on him), my Mother, and my Mother in Law whose words of encouragement and push for tenacity ring in my ears.

I also dedicate this dissertation to my loving husband **Kamal** for his help and support and for giving me a worm environment to study.

This thesis is also dedicated to my brother **Mohamed** and my sisters **Fatma**, and **Nahla** for being there for me throughout the entire doctorate program.

Special dedications are due to the support from the Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC) for funding, helping, learning, cooperating, and advising me throughout all this work. The atmosphere at the laboratory, especially within the in-organic chemistry department, is incredibly collaborative.

ACKNOWLEDGMENT

First praise is to **Allah**, the Almighty, on whom ultimately we depend for generous help and guidance.

Second, I would like to express my sincere gratitude to my advisor **Prof. Dr. Salah Abdel-Ghany Abo El-Enein**, Prof. of Physical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University for the continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

Attia Moustafa, Prof. of Inorganic and Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University for his support, guidance, careful reading and constructive comments that helped me complete this research. Also, my sincere appreciation goes to my supervisor Prof. Dr. Maha Mahmoud Ali, deputy director of the Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater El-Khayria, for her invaluable advice, supervision, help, support and valuable discussion through the study work. I am also deeply indebted to my supervisor to Prof. Dr. Gehad Genidy Mohamed, Prof. of Inorganic and Analytical Chemistry, Chemistry Department, Faculty of Science, Cairo University for his support, encouragement, guidance and deductive comments that was very valuable to me.

ACCEPTED PAPER

Removing Heavy Metals from Industrial Wastewater Using Cement Kiln Dust and Electric Arc Furnace Dust as Industrial By-Products

S. A. Abo-El-Enein^{1*}, M. S. Attia¹, M. M. Ali², G. G. Mohamed³, M. S. S. Soliman²

¹Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
² Chemistry Department, Central Laboratory for Environmental Quality Monitoring, National
Water Research Center, Cairo, Egypt

³ Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt

Corresponding author: saaboelenein@yahoo.com (S. A. Abo-El-Enein)

Tel: +202 01005363830

Abstract

The River Nile and its branches are the main source of fresh water in Egypt. They are subjected to all pollution sources, among and most important of it is the industrial one. This study aims to investigate removal efficiency of industrial wastewater discharged to Ismailia Canal using cement kiln Dust (CKD) and electric arc furnace dust (EAFD) as industrial adsorbents. Some heavy metals such as; iron, manganese, aluminum, nickel, and zinc have been studied. The adsorption process is examined in terms of its equilibria and kinetics. Batch adsorption experiments are performed to evaluate the removal of these metals onto CKD and EAFD by-product wastes under various operational conditions such as; adsorbate ions concentration, contact time, pH, adsorbent dose, and temperature. The results revealed that CKD has a very high affinity to adsorb iron, manganese, nickel, and zinc ions. While, EAFD can efficiently adsorb only manganese, aluminum and nickel. The adsorption isotherms and kinetic studies indicated that the adsorptive behavior of heavy metals ions on CKD and EAFD satisfy the Langmuir assumptions, i.e. monolayer formation on the surface of the adsorbent, and obeys the pseudo-second-order equation reaction.

Keywords

Heavy Metals Treatment, Cement Kiln Dust, Electric Arc Furnace Dust, Ismailia Canal, Adsorption and Langmuir Isotherm.

Table of Contents

Cubinat	Page
Subject	Number
1. INTRODUCTION & LITERATURE REVIEW	1
1.1. Water Resources in Egypt	2
1.1.1. Nile System (Nile river and Irrigation Canals)	2
1.1.2. Groundwater	8
1.1.3. Drainage System	14
1.2. Wastewater Treatment	16
1.2.1. Preliminary Treatment	16
1.2.2. Primary Treatment	17
1.2.3. Secondary Treatment	17
1.2.4. Tertiary Treatment	18
1.3. Adsorption Process	18
1.3.1. Types of Adsorption	19
1.3.1.1. Physical Adsorption	19
1.3.1.2. Chemical Adsorption	19
1.3.2. Factors Affecting the Adsorption Process	20
1.3.2.1. Adsorbate Characteristics	20
1.3.2.2. Adsorbent Characteristics	20
1.3.2.3. Initial Concentration	20
1.3.2.4. Contact Time	21
1.3.2.5. Ionic Strength or Salinity	21
1.3.2.6. Hydrogen Ion Concentration (pH)	22
1.3.2.7. Stirring	22
1.3.2.8. Sorbent Dosage	22
1.3.2.9. Temperature	23
1.3.2.10.Adsorption of Mixed Solutes	23
1.3.3. Isotherm Modelling	23

1.3.3.1. Langmuir Isotherm	24
1.3.3.2. Freundlich Isotherm	24
1.3.3.3. Temkin Isotherm	26
1.3.4. Kinetic Studies	27
1.3.5. The Chemical Thermodynamics	28
1.4. Literature Review on Heavy Metals Adsorption	29
1.4.1. Heavy Metal Adsorption using Natural or	
Industrial Products	29
1.4.2. Heavy Metal Adsorption using Synthetic Materials	39
2. MATERIALS AND METHODS	45
2.1. Sampling and Preservation	46
2.2. Sampling Site	47
2.3. Chemicals	49
2.4. Adsorbents	50
2.5. Inductively Coupled Plasma-Optical Emission	
, , ,	
Spectrophotometry (ICP-OES)	51
	51 52
Spectrophotometry (ICP-OES)	
Spectrophotometry (ICP-OES) 2.6. pH	52
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments	52 52
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies	52 52 52
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration	52 52 52 53
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time)	52 52 52 53 54
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH	52 52 52 53 54 54
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature	52 52 52 53 54 54 54
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature 2.7.6. Effect of Adsorbent Dose	52 52 52 53 54 54 54 54
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature 2.7.6. Effect of Adsorbent Dose 2.7.7. Stirring Rate	52 52 52 53 54 54 54 55
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature 2.7.6. Effect of Adsorbent Dose 2.7.7. Stirring Rate 2.7.8. Adsorbent Characterization	52 52 52 53 54 54 54 55 55
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature 2.7.6. Effect of Adsorbent Dose 2.7.7. Stirring Rate 2.7.8. Adsorbent Characterization 2.7.8.1. X-Ray Diffraction	52 52 52 53 54 54 54 55 55
Spectrophotometry (ICP-OES) 2.6. pH 2.7. Experiments 2.7.1. Batch Mode Adsorption Studies 2.7.2. Effect of Initial Metal Ion Concentration 2.7.3. Adsorption Kinetic Study (Contact Time) 2.7.4. pH 2.7.5. Effect of Temperature 2.7.6. Effect of Adsorbent Dose 2.7.7. Stirring Rate 2.7.8. Adsorbent Characterization 2.7.8.1. X-Ray Diffraction 2.7.8.2. Energy Dispersive X-Ray "EDAX" Elemental	52 52 52 53 54 54 54 55 55 56 56

2.7.8.4. Transmission Electron Microscope (TEM)	57
2.7.8.5. Surface Area Measurements (BET)	57
3. RESULTS & DISCUSSIONS	58
3.1. Adsorption Characterization	59
3.1.1. Characterization of CKD	59
3.1.2. Characterization of EAFD	62
3.1.3. Characterization of Nano-Meta Kaolin	64
3.2. Adsorption Experiments	67
3.2.1. The Effect of Initial Metal Ions Concentrations on	
its Removal	67
3.2.1.1. The effect of Initial Concentration on the Metal	
Ion Removal Percentage Using CKD	68
3.2.1.2. The effect of Initial Concentration on the Metal	
Ion Removal Percentage Using EAFD	69
3.2.1.3. The effect of Initial Concentration on the Metal	
Ion Removal Percentage Using NMK	70
3.2.2. The effect of Contact Time on the Metal Ion	
Removal	72
3.2.2.1. The effect of Contact Time on the Metal Ion	
Removal Percentage by CKD	73
3.2.2.2. The effect of Contact Time on the Metal Ion	
Removal Percentage by EAFD	74
3.2.2.3. The effect of Contact Time on the Metal Ion	
Removal Percentage by NMK	74
3.2.3. The Effect of pH on the metal Ion Removal	76
3.2.3.1. The Effect of pH on the metal Ion Removal	
Percentage by CKD	<i>78</i>
3.2.3.2. The Effect of pH on the metal Ion Removal	
Percentage by EAFD	79
3.2.3.3. The Effect of pH on the metal Ion Removal	

Percentage by NMK	80
3.2.4. The Effect of Stirring Rate on the Metal Ion	
Removal	83
3.2.4.1. The Effect of Stirring Rate on the metal Ion	
Removal Percentage by CKD	84
3.2.4.2. The Effect of Stirring Rate on the metal Ion	
Removal Percentage by EAFD	84
3.2.4.3. The Effect of Stirring Rate on the metal Ion	
Removal Percentage by NMK	84
3.2.5. The Effect of the Adsorbent Dose at Different	
Time Intervals on the Metal Ions Removal	86
3.2.5.1. The Effect of the Adsorbent Dose at Different	
Time Intervals on the Metal Ions Removal	
Percentage by CKD	87
3.2.5.2. The Effect of the Adsorbent Dose at Different	
Time Intervals on the Metal Ions Removal	
Percentage by EAFD	87
3.2.5.3. The Effect of the Adsorbent Dose at Different	
Time Intervals on the Metal Ions Removal	
Percentage by NMK	87
3.2.6. The Effect of Temperature on the metal Ion	
Removal	93
3.2.6.1. The Effect of Temperature on the metal Ion	
Removal Percentage by CKD	93
3.2.6.2. The Effect of Temperature on the metal Ion	
Removal Percentage by EAFD	93
3.2.6.3. The Effect of Temperature on the metal Ion	
Removal Percentage by NMK	93
3.3. Adsorption Isotherm	96
3.3.1. Langmuir Isotherm	96

3.3.1.1. Langmuir Adsorption Isotherm Model by CKD	97
3.3.1.2. Langmuir Adsorption Isotherm Model by EAFD	97
3.3.1.3. Langmuir Adsorption Isotherm Model by NMK	97
3.3.2. Freundlich Isotherm	100
3.3.2.1. Freundlich Adsorption Isotherm Model by CKD	101
3.3.2.2. Freundlich Adsorption Isotherm Model by EAFD	101
3.3.2.3. Freundlich Adsorption Isotherm Model by NMK	102
3.3.3. Temkin Isotherm	104
3.3.3.1. Temkin Adsorption Isotherm Model by CKD	105
3.3.3.2. Temkin Adsorption Isotherm Model by EAFD	105
3.3.3.3. Temkin Adsorption Isotherm Model by NMK	105
3.4. Kinetic Studies	108
3.4.1. Pseudo-First-Order Model for Metal Ions Sorption	
by CKD	109
3.4.2. Pseudo-First-Order Model for Metal Ions Sorption	
by EAFD	109
3.4.3. Pseudo-First-Order Model for Metal Ions Sorption	
by NMK	110
3.4.4. Pseudo-Second-Order Model for Metal lons	
Sorption by CKD	112
3.4.5. Pseudo-Second-Order Model for Metal lons	
Sorption by EAFD	113
3.4.6. Pseudo-Second-Order Model for Metal lons	
Sorption by NMK	113
3.5. The Chemical Thermodynamics	116
3.5.1. Thermodynamic Parameters of the Sorption of	
Metal Ions on CKD	117
3.5.2. Thermodynamic Parameters of the Sorption of	
Metal Ions on EAFD	117
3.5.3. Thermodynamic Parameters of the Sorption of	

Metal Ions on NMK	117
3.6. Application	119
3.6.1. Collecting Samples	119
3.6.2. Experiment	120
3.6.3. Results	120
SUMMARY	123
RECOMMENDATIONS	127
APPENDIX	128
REFERENCES	137

List of Tables

Table No.	Name	Page No.
Table 1.1	The available water sources in Egypt.	2
Table 1.2	Overview of some potential pollutants per type of	
	industry.	6
Table 1.3	Hydrogeological characteristics of main aquifers	10
Table 2.1	The major heavy metals and its effects on human	
	health.	45
Table 3.1	Heavy metals' concentrations (mg/L) of some	
	pollution sources discharging to Ismailia Canal.	58
Table 3.2	Energy dispersive X-ray spectroscopy of CKD.	61
Table 3.3	Energy dispersive X-ray spectroscopy of EAFD.	64
Table 3.4	Energy dispersive X-ray spectroscopy of NMK.	67
Table 3.5	Metal ions solution pH.	78
Table 3.6	pH precipitation ranges for all metal ions.	78
Table 3.7	Removal % of metal ions on CKD at initial and	
	optimum pH values.	81
Table 3.8	Removal % of metal ions on EAFD at initial and	
	optimum pH values.	82
Table 3.9	Removal % of metal ions on NMK at initial and	
	optimum pH values.	83
Table 3.10	Constants of Langmuir isotherm for the adsorption of	
	metal ions by CKD.	98
Table 3.11	Constants of Langmuir isotherm for the adsorption of	
	metal ions by EAFD.	99
Table 3.12	Constants of Langmuir isotherm for the adsorption of	
	metal ions by NMK.	100
Table 3.13	Constants of Freundlich isotherm for the adsorption	
	of heavy metals using CKD.	103
Table 3.14	Constants of Freundlich isotherm for the adsorption	
	of heavy metals using EAFD.	103
Table 3.15	Constants of Freundlich isotherm for the adsorption	
	of heavy metals using NMK.	104
Table 3.16	Constants of Temkin isotherm for the adsorption of	
	heavy metals by CKD.	106
Table 3.17	Constants of Temkin isotherm for the adsorption of	
	heavy metals by EAFD.	107
Table 3.18	Constants of Temkin isotherm for the adsorption of	
	heavy metals by NMK.	108
Table 3.19	Constants of PFO model for the adsorption of metal	
	ions on CKD.	111
Table 3.20	Constants of PFO model for the adsorption of metal	
	ions on EAFD.	111
Table 3.21	Constants of PFO model for the adsorption of metal	
	ions on NMK.	112

Table 3.22	Constants of PSO model for the adsorption of metal	
	ions on CKD.	114
Table 3.23	Constants of PSO model for the adsorption of metal	
	ions on EAFD.	115
Table 3.24	Constants of PSO model for the adsorption of metal	
	ions on NMK.	116
Table 3.25	The chemical thermodynamic parameters for the	
	sorption of metal ions on CKD.	118
Table 3.26	The chemical thermodynamic parameters for the	
	sorption of metal ions on EAFD.	119
Table 3.27	The chemical thermodynamic parameters for the	
	sorption of metal ions on NMK.	119
Table 3.28	Results of the case studies by CKD adsorbent.	121
Table 3.29	Results of the case studies by EAFD adsorbent.	122
Table 3.30	Results of the case studies by NMK adsorbent.	122