RECENT ADVANCES IN BREAST RECONSTRUCTION AFTER MASTECTOMY

Essay

Submitted for partial fulfilment of the Master Degree in general surgery

By:

Suhaila Mohamed Shawky Youssef M.B.B.Ch.

Supervised by:

Prof. Dr. Magdy Abd-Alghany Bassiouny

Professor of General Surgery Faculty of Medicine – Ain Shams University

Prof. Dr. Hossam Eldin Hassan Alazazy

Professor of General Surgery Faculty of Medicine – Ain Shams University

Dr. Dina Hany Ahmed

Lecturer of General Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2017

Contents

-	Introduction 1
•	Aim of work 4
•	Review of literature
	➤ Chapter 1: Anatomy of the Female Breast 5
	➤ Chapter 2: Types of mastectomy
	Chapter 3: Types of breast reconstruction after mastectomy
	➤ Chapter 4: Post-operative period & follow-up . 103
	➤ Chapter 5: Outcomes of breast reconstruction . 112
•	Conclusion 120
•	Summary 121
•	References 124
-	Arabic summary

List of Abbreviations

ALND..... Axillary lymph node dissection.

ASIS Anterior superior iliac spine.

ADM Acellular Dermal Matrix.

BC Breast cancer.

BCS Breast conserving surgery.

BCT..... Breast-conservation therapy.

CT Computed tomography.

DIEA...... Deep Inferior Epigastric Artery.

DIEP Deep Inferior Epigastric Perforator.

DIEV..... Deep Inferior Epigastric Vein.

FNA...... Fine-needle aspiration.

GAP..... Gluteal Artery Perforator.

IBC..... Inflammatory breast cancer.

IBR..... Immediate breast reconstruction.

IMF Inframammary fold.

IGAP...... Inferior Gluteal Artery Perforator.

ITA..... Internal thoracic artery.

ITV..... Internal thoracic vein.

LD Latissimus dorsi.

MRA Magnetic resonance angiography.

MRI...... Magnetic resonance imaging.

MRM...... Modified radical mastectomy.

NSM Nipple sparing mastectomy.

PAP Profunda artery perforator.

PMRT Post-mastectomy radiotherapy.

PRP Platelet-rich plasma.

RCTs...... Randomized controlled trials.

RT Radiotherapy.

Sc-GAP ... Septocutaneous Gluteal Artery Perforator.

SGAP Superior Gluteal Artery Perforator.

SIEA...... Superficial inferior epigastric artery.

SIEV...... Superficial Inferior Epigastric Vein.

SNB Sentinel node biopsy

SSM...... Skin sparing mastectomy.

SVF Stromal vascular fraction.

TRAM..... Transverse Rectus Abdominis Myocutaneous.

TUG Transverse upper gracilis.

US...... Ultrasound

Tist of Tables

Table No.	Description	Page No.
Table 1	Comparison of advantages and disadvantages between immediate and delayed breast reconstruction	31
Table 2	Baker Classification of breast implant contracture	45

List of Figures

Figure No.	Description	Page No.
Figure 1	Statistical standards for the dimensions of the breast.	7
Figure 2	Components of the breast.	10
Figure 3	Arterial supply of the breast.	13
Figure 4	Lymphatic drainage of the breast.	16
Figure 5	Implant filled with cohesive gel.	33
Figure 6	Textured and smooth surface gel implants.	34
Figure 7	Two-stage implant reconstruction.	40
Figure 8	Placement of Acellular Dermal Matrix.	42
Figure 9	Rippling following implant insertion.	44
Figure 10	Grade 4 capsular contracture.	46
Figure 11	Blood supply to Latissimus dorsi muscle.	50
Figure 12	Breast reconstruction with latissimus dorsi flap and implant.	51
Figure 13	Modified Extended Latissimus Dorsi Myocutaneous Flap with added vascularised chest wall fat.	55

Figure 14	Right rectus abdominis muscle, left rectus abdominis muscle is removed to show superior & inferior epigastric vessels.	59
Figure 15	Perfusion zones of TRAM flap.	60
Figure 16	Vascular supply of unipedicled TRAM flap.	61
Figure 17	Unipedicled TRAM flap tunneled subcutaneously into the mastectomy defect and direct closure of donor site.	63
Figure 18	Breast reconstruction with free TRAM flap.	66
Figure 19	Different types of perforators.	69
Figure 20	Surgical anatomy of Deep Inferior Epigasteric artery.	71
Figure 21	Preoperative marking on the lower abdomen for DIEP flap.	74
Figure 22	Perforating vessels of the lateral branch of the DIEA are visible coursing through the rectus sheath.	76
Figure 23	Delayed right breast reconstruction with a left free SIEA flap.	80
Figure 24	Anatomy of GAP flap.	82
Figure 25	Skin island location of the SGAP flap.	84

Figure 26	Schematic illustration of the identification of Sc-GAP.	89
Figure 27	Design of the crescentic inner thigh TUG flap based over the upper gracilis muscle.	91
Figure 28	TUG flap is folding for immediate nipple-areolar complex reconstruction.	93
Figure 29	PAP flap preoperative & postoperative.	96
Figure 30	Mapping Technique of Fat Injection.	100
Figure 31	BRAVA device.	104
Figure 32	Abnormalities in body posture following mastectomy for breast cancer.	113

Introduction

Breast cancer is the commonest cancer in women worldwide, with almost 1.7 million new diagnoses in 2012, and the second leading cause of cancer mortality. Current data suggests that one in eight women in their lifetime will be diagnosed with breast cancer. Despite the progressive increase in the incidence of breast cancer over the past two decades, the mortality from breast cancer has dropped largely, overall breast cancer death rates declined 36% from 1989 to 2012, this is attributed to better detection and improved therapeutic interventions (**DeSantis**, et al. 2016).

Unlike the enormous majority of cancers, breast cancer is unique in that the treatment usually yield in significant alteration of the overall body image and disfigurement of the breast, which is thought-out to be a considerable symbol of femininity and sexuality (Ceradini & Levine, 2008).

Surgical treatment options include breast-conserving surgery or mastectomy. Breast-conserving surgery is indicated in early stage invasive breast carcinoma but there is also a potential need for further surgery, possibly mastectomy in cases of local recurrence. Breast reconstruction is considered an option for women after mastectomy (McCready, et al., 2005).

During the last century, breast reconstruction after mastectomy has become a vital part of comprehensive treatment for patients with breast cancer. Breast reconstruction was originally initiated to lessen chest wall deformities and to decrease complications of mastectomy. Now, however, it is established that reconstruction can also boost the psychosocial well-being and quality of life of patients with breast cancer (HU & Alderman, 2007).

One of the aims of breast reconstruction is to "first do no harm." Reconstruction after mastectomy should not hinder the patient's oncologic treatment (i.e., delay administration of chemotherapy or radiation therapy), should not delay the diagnosis of a recurrence, or add an undesirable increase in operative morbidity or mortality. The specific surgical goals of the plastic surgeon are to enhance the aesthetic results while keeping in mind the patient's preferences and surgical limitations (HU & Alderman, 2007).

The primary reconstructive options involve the use of an implant with or without tissue expansion or with Alloderm patient's own the tissue (autogenous reconstruction either pedicled flaps or free flaps), or both, and breast reconstruction using fat grafting (non-vascularized autologous lipoaspirate fat). The reconstructive process can start at the time of mastectomy (immediate reconstruction) or (delayed time afterwards reconstruction) any (Ramakrishnan & Tare, 2007).

Introduction

The commonly used autologous tissue flaps for breast reconstruction are Latissimus dorsi myocutaneous flap with implant, extended Latissimus dorsi flap without implant, pedicled Transverse Rectus Abdominis Myocutaneous (TRAM) flap and free TRAM flap (Ramakrishnan & Tare, 2007).

Refinements of these techniques led to the development of microsurgical perforator flaps, which have allowed the transfer of the patient's own skin and fat in a predictable manner with minimal donor site morbidity (Allen et al., 2006).

Prior to surgery, patients should be informed about all treatment methods, including the different techniques of breast reconstruction to best personalize it. The patients also must know the advantages and disadvantages of any reconstructive choice, including the presumptively less complex implant-based technique that may yield in high temporary satisfaction without any donor site morbidity and likelihood of reoperation due to rupture or capsular contracture and the obviously more complicated flap-based procedures that will provide high long-term satisfaction but with the risk of donor site morbidity & flap associated complications (Schmauss, et al., 2015).

Aim of the Work

To have an overview on different modalities of breast reconstruction after mastectomy and highlighting the recent advances in breast reconstruction, their benefits and drawbacks.

Anatomy of the Female Breast

Embryogenesis

The mammary gland is a modified and highly specialized type of apocrine sweat gland. During the fourth week of gestation, paired ectodermal thickenings termed mammary ridges or milk lines develop on the ventral surface of the embryo and extend in a curvilinear fashion convex towards the midline from the axillae to the medial thigh, these ridges disappear except at the level of the fourth intercostal space on the anterior thorax, where the mammary gland subsequently develops. These buds continue lengthening and branching (Gabriel & Maxwell, 2015).

During the 20th week, small lumina develop within the buds that coalesce and elongate to form the lactiferous ducts. At term, approximately 15-20 lobes of glandular tissue have formed, each containing a lactiferous duct. Support for the breast comes from both the skin envelope and the fibrous suspensory ligaments of Astley Cooper that anchor the breast to the pectoralis major fascia (Gabriel & Maxwell, 2015).

Each of the 15-20 lobes of the mammary gland has an ampulla with an orifice opening into this mammary pit. Stimulated by the inward growth of the ectoderm, the mesoderm surrounding this area proliferates, creating the nipple with circular and longitudinally oriented smooth

muscle fibers. The surrounding areola is formed by the ectoderm during the fifth month of gestation. The areola also contains other epidermal glands, including glands of Montgomery (sebaceous glands that serve to lubricate the areola) (Gabriel & Maxwell, 2015).

Anatomy of the breast:

The breasts are located on the anterior and also partly the lateral aspects of the thorax. Each breast extends superiorly to the second rib, inferiorly to the sixth costal cartilage, medially to the sternum, and laterally to the midaxillary line, the nipple—areola complex is located between the fourth and fifth ribs. Natural lines of skin tension, known as Langer lines, extend outwards circumferentially from the nipple—areola complex (Jatoi, et al. 2006).

Two thirds of the breast lies anterior to pectoralis major, the reminder lies anterior to the serratus anterior. A prolongation of the upper outer quadrant of the breast extends to the axilla referred to as the tail of Spence (McGuire, 2016).

The contour should be neither concave nor convex, but a plane that extends out to the point of maximum projection of the breast at the level of the nipple. In the ideal breast form, the nipple areolar complex should be cephalad to the level of the inframammary fold (**De la Torre & Davis**, **2013**).

Statistical standards for the dimensions of the breast have been analyzed and reported by various authors. The distance from the sternal notch to the nipple and the distance from the midclavicular line are each 19–21 cm. The distance from nipple to the inframammary fold is 5–7 cm. The distance from the nipple to the midline is 9–11 cm (Fig.1). These measurements offer guidelines for altering the breast, which must be individualized, based on proportionality, variances in chest wall anatomy, posture and patient preference (**De la Torre et al, 2013**).

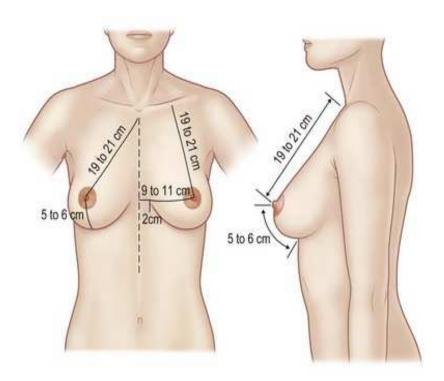


Figure 1: Statistical standards for the dimensions of the breast (De la Torre & Davis, 2013).