PRODUCTION OF TRANSGENIC CANOLA PLANTS RESISTANT TO BLACK CUTWORM "Agrotis ipsilon"

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2015

APPROVAL SHEET

PRODUCTION OF TRANSGENIC CANOLA PLANTS RESISTANT TO BLACK CUTWORM

"Agrotis ipsilon"

Ph.D. Thesis
In
Agric. Sci. (Genetics)

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2010

APPROVAL COMMITTEE

Dr. MOHAMED ABD EL-SALAM RASHED
Professor of Genetics, Fac. Agric., Ain Shams University
Dr. AHMED MOHAMMED EL-SHARKAWY
Professor of Genetics, Fac. Agric., Cairo University
Dr. REDA ELWANY A. MOGHAIEB
Professor of Genetics, Fac. Agric., Cairo University
Dr. SAWSAN SAMY YOUSSEF
Professor of Genetics, Fac. Agric., Cairo University

Date: 29 / 10 / 2015

SUPERVISION SHEET

PRODUCTION OF TRANSGENIC CANOLA PLANTS RESISTANT TO BLACK CUTWORM

"Agrotis ipsilon"

Ph.D. Thesis In Agricultural Sci. (Genetics)

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2010

SUPERVISION COMMITTEE

Dr. SAWSAN SAMY YOUSSEF

Professor of Genetics, Fac. Agric., Cairo University

Dr. REDA ELWANY A. MOGHAIEB

Professor of Genetics, Fac. Agric., Cairo University

Dr. SAYED ABDEL WAHAB MORAAD

Head Research, Plant Protection Research Institute, Agricultural Research Center, Ministry of Agriculture

Name of Candidate: Etr Hussein Kamel Mohammed Degree: Ph.D. Title of Thesis: Production of transgenic canola plants resistant to black

cutworm "Agrotis ipsilon"

Supervisors: Dr. Sawsan Samy Youssef

Dr. Reda Elwany A. Moghaieb Dr. Sayed Abdel Wahab Moraad

Department: Genetics Approval: 29/10 / 2015

ABSTRACT

In order to improve insect resistance in canola, transgenic canola plants expressing the Cry11a5 gene were developed. The cultivars tested differ genetically for callus induction and somatic embryo formation. The cultivar Serw-4 exhibited high regeneration efficiency (97%) followed by Serw-3 (88%). The genetic differences in regeneration ability among the four canola cultivars were resolved by RAPD and AFLP analyses. The genotype-specific markers were determined which can be verified as useful genetic markers for the regeneration capacity of the different canola cultivar used. The efficiency of sonication assisted Agrobacterium and particle bombardment mediated gene delivery systems was compared. The data indicate that 5 sec. sonication followed by Agrobacterium infection improves the transformation efficiency to 55% and 33% compared with 25% and 16% that resulted from biolistic gun for the cultivars Serw-4 and Serw-3, respectively. The number of transgenic plants recovered from the Agro-sonication method was higher in comparison to biolistic mediated transformation. The Agro-sonication method was employed to develop transgenic canola plants expressing the Cry11a5 gene. Stable integration of the Cry1Ia5 gene into plant genome was confirmed by PCR and Southern blot analyses. Northern blot analysis of the T₂ plants confirmed the expression of the Cry1Ia5 gene. The insecticidal activity of five transgenic canola lines against the 2nd larval instars of black cutworm was tested. The transgenic line 5 was more toxic, it causes 100% mortality after four days of feeding. The transgenic lines L2, L3, L4 cause 60, 20, 80 mortality % respectively after six days of feeding. Significant decreases in total protein, protease, lipase, alpha esterase and AChE activities were detected in the body of larvae fed on transgenic material compared with the control. The data show a significant increase in GST and chitinase activities in the body of larvae fed on bt compared with the control canola plants. Transgenic plants showed high resistance to black cutworm and can serve as a novel genetic resource in future breeding programs. Transgenic plants expressing BT protein were normal in phenotype with as good seed setting as the non-transgenic control plants.

Key words: Cry11a5 gene, Insect resistance, Canola, Transformation.

DEDICATION

I dedicate this work to whom my heartfelt thanks: to my father, mother, sister and brother for all the support and encouragement they continually offered along the period of my post-graduate studies.

ACKNOWLEDGEMENT

At first, I would like to thank **ALLAH** that allowing me to achieve this work, without his bless any great effort is invaluable.

I wish to express my deep gratitude to **Dr. Sawsan S.**Youssef Professor of Genetics, Faculty of Agriculture, Cairo University, for supervision, guidance, encouragement, following the progress of the work and continuous criticism through the course of study. I would like also to express my deep appreciations and utmost gratitude to **Dr. Reda E.A. Moghaeib**, Professor of Genetics, Faculty of Agriculture, Cairo University for his supervision of this investigation, encouragement, unlimited help, great interest, moral support and valuable guidance throughout the achievement of this study.

My special and deep thanks to **Dr. Sayed Abdel -Wahab Moraad**Head Research, Plant Protection, Plant Protection Research
Institute, Agricultural Research Center. And many thanks to **Dr. Sanna A. Mohamed** Head Research, Plant Protection, Plant
Protection Research Institute, Agricultural Research Center for
her valuable help, continued assistance and encouragement during
this work. Sincere thanks are due to **Dr. Ahmed M. EL-Sharkawy**Professor of Genetics, Faculty of Agriculture, Cairo University,
for his generous help and encouragement. And many thanks are
due to all the members of the Genetic Engineering Research
Center, Faculty of Agriculture, Cairo University and all the
members of the Department of Genetics, Cairo University for
their continuous help and all the members of the Plant Protection
Research Institute, Department of Field Crop Pests for their
continuous help, facilities and moral support.

CONTENTS

INTE	RODUCTION
	IEW OF LITERATURE
1.	Insect's damage in canola
2.	Canola regeneration
3.	The application of molecular marker in canola breeding
4.	Analysis of somaclonal variation at the molecular marker level
6.	Canola transformation system
7.	Improvement of insect's resistance in transgenic canola
8.	Changes in insect's enzyme activity due to toxin stress
MAT	ERIALS AND METHODS
	ULTS AND DISCUSSION
	otimization of regeneration system in canola
a.	Regeneration capacity among canola cultivars
	Genetic polymorphism among canola cultivars
	ransformation of canola cultivars
a.	Comparing the efficiency of sonication assisted <i>Agrobacterium</i> -mediated and particle bombardment for the production of transgenic canola
b.	Transgenic canola plants expressing the Crylla5 gene
3. In	sect bioassay
a.	Insecticidal activity of <i>Cry11a5</i> expressing canola plants against the 2 nd larval instar of black cutworm
b.	Evaluation of <i>Cry1Ia5</i> expressing canola plants against the 4 th larval instar of black cut worm
SUM	MARY
REF	ERENCES
	RIC SIIMMARV

LIST OF TABLES

No.	Title	Page
1.	The cultivars pedigree	41
2.	Name and sequences for 15 random primers used in RAPD analysis	44
3.	Shoot regeneration frequencies on the meristematic end of the hypocotyl of four canola cultivars	66
4.	The analysis of variance showing the shoot induction in four canola cultivars regenerated in vitro	67
5.	Total number of scorable bands, polymorphism % and band size of RAPD markers obtained by 15 random primers	68
6.	Canola genotype specific RAPD markers	70
7.	Total bands, polymorphic bands and polymorphism percentages among canola cultivars as revealed by AFLP analysis	72
8.	Canola genotype-specific AFLP markers	74
9.	The transformation frequencies of the two canola cultivars transformed with <i>gfp</i> gene using Biolistic gun and sonication assisted Agrobacterium mediated	83
10.	The transformation frequencies of the two canola cultivars transformed with <i>Cry1Ia5</i> gene	91
11.	Analysis of variance showing the differences in the enzyme activity between five transgenic canola lines expressing the <i>CryIIa5</i> gene against black cutworm (<i>A. ipsilon</i>)	111