ANALYSIS AND DESIGN OF WALLS AND WALL PROTECTION SYSTEMS SUBJECT TO BLAST USING THE APPLIED ELEMENT METHOD

By

Tarek Mohamed Mohamed El-Kadry Mohamed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ANALYSIS AND DESIGN OF WALLS AND WALL PROTECTION SYSTEMS SUBJECT TO BLAST USING THE APPLIED ELEMENT METHOD

By

Tarek Mohamed Mohamed El-Kadry Mohamed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Sherif Ahmed Mourad

Professor of Steel Structures and Bridges
Structural Engineering Department
Faculty of Engineering
Cairo University

Dr. Ahmed Amir Khalil

Associate Professor
Structural Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ANALYSIS AND DESIGN OF WALLS AND WALL PROTECTION SYSTEMS SUBJECT TO BLAST USING THE APPLIED ELEMENT METHOD

By

Tarek Mohamed Mohamed El-Kadry Mohamed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by the	
Examining Committee	
Prof. Dr. Sherif Ahmed Mourad Structural Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Hamed Mohamed Hadhoud Structural Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Mostafa Kamel Zidan Structural Engineering Department	
Faculty of Engineering, Ain Shams University	

Engineer: Tarek Mohamed Mohamed El-Kadry

Mohamed Osman

Date of Birth: 1/10/1981 **Nationality:** Egyptian

E-mail: tarek kungfu@hotmail.com

Phone: 01006070329

Address: 4 khairy street, Kobri El-Koba, Cairo

Registration Date: 1/10/2009 **Awarding Date:** / 2016 **Degree:** Master of science

Department: Structural Engineering

Supervisors: Prof. Dr. Sherif Ahmed Mourad

Dr. Ahmed Amir Khalil

Examiners: Prof. Dr. Sherif Ahmed Mourad

Prof. Dr. Hamed Mohamed Hadhoud

Prof. Dr. Mostafa Kamel Zidan (Structural Engineering Department-

Faculty of Engineering-Ain Shams Univercity)

Title of Thesis: Analysis and Design of Walls and Wall Protection Systems
Subject To Blast Using the Applied Element Method

Key Words: (Petrochemical Structures, Vapor Cloud Explosions, Protection Walls, Blast Loads and AEM)

Summary:

Blast loading due to vapor cloud explosions is a common case of loading in the design of petrochemical structures. Most blast design codes allow the use of simplified single degree of freedom (SDOF) analyses to design structures subjected to blast loading. However, using SDOF simplification is always accompanied with overly conservative assumptions. Thus, performing advanced three-dimensional structural analysis can lead to reduction in the straining actions and deflections resulting from the analysis. In this study, the effect of using three dimensional Applied Element analyses for walls subject to blast loading was highlighted using the software (ELS). The program was verified by comparing the results to results from experimental testing. Also an applied element model was developed for a building was designed to resist blast loading using the SDOF method. The AEM results show noticeable reduction in walls deflection and rotation, and a cost saving in wall materials was achieved.

Acknowledgement

First of all, I am grateful to Allah for the good health and well-being that were necessary to complete this thesis.

I wish to express my sincere thanks and gratitude to my supervisor **Prof. Sherif Mourad** who allowed me this opportunity, for his insightful comments, guidance, and patience, and also **Dr. Ahmed Amir** for introducing me to the topic, helping me throughout the research time ,and his continuous support & motivation.

I would like to acknowledge the support of Applied Science International, LLC for providing access to the software Extreme Loading ® for Structures, and for providing training regarding the use of the software through its technical support team.

Finally, I take this opportunity to express my deepest sense of gratitude for the inexhaustible overflow of giving and care of my parents, and my two sisters producing role models in engineering. Very special thanks to my beloved wife and my two baby girls for their patience, unwavering love & encouragement.

Table of Contents

Acknowledgement.	Contents	Page
List of Figures. IV List of Tables. VIII Abstract. XII Chapter 1- Introduction. 1 1.1 General Background. 1 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2 Verification Model. 20 3.4.2.2 Verification Model. 20 3.4.2.3 Third Stage (Models With Connections Modeled as Springs). 20 3.4.2.3 Third Stage (Models With Bolts Modeled as Solid Elements) 25 4.1 Case Study. 58 4.2 Building Design Criteria. 59 4.3 Applied Loads. 59 <th>Acknowledgement</th> <th>I</th>	Acknowledgement	I
List of Tables. VIII Abstract. XII Chapter 1- Introduction. 1 1.1 General Background. 3 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 20 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 3.4 ELS and Model. 58 4.1 Case Study. 58 4.2 Building Design Criteria. <	Table of Contents.	II
List of Tables. VIII Abstract. XII Chapter 1- Introduction. 1 1.1 General Background. 3 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 20 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 3.4 ELS and Model. 58 4.1 Case Study. 58 4.2 Building Design Criteria. <	List of Figures	IV
Abstract. XII Chapter 1- Introduction. 1 1.1 General Background. 1 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification 15 3.4.1 Verification Test Description. 15 3.4.2 Verification Model. 20 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 20 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 Chapter 4 - Parametric Study. 58 4.1 Case Study. 58 4.2 Building Design Criter		
Chapter 1- Introduction. 1 1.1 General Background. 1 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2 Verification Model. 20 3.4.2.3 Third Stage (Models With Connections Modeled as Springs). 20 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 Chapter 4 - Parametric Study. 58 4.1 Case Study. 59 4.2 Building Design Criteria. 59 4.3 Applied Loads. 59 4.4 Simplified SDOF Method 60 4.5 AEM Model. 60 <tr< td=""><td></td><td></td></tr<>		
1.1 General Background. 1 1.2 Limitations of SDOF Analysis. 3 1.3 Research Significance. 4 1.4 Thesis Organization. 4 Chapter 2 - Literature Review. 5 2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 - The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2 Verification Model. 20 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 25 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 Chapter 4 - Parametric Study. 58 4.1 Case Study. 58 4.2 Building Design Criteria. 59 4.3 Applied Loads. 59 4.4 Simplified SDOF Method 60 4.5 AEM Mode	Abstract	XII
2.1 Theoretical Studies. 5 2.2 Code Provisions. 8 Chapter 3 – The Applied Element Method (AEM). 10 3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS). 12 3.4 ELS. Program Verification. 15 3.4.1 Verification Test Description. 15 3.4.2 Verification Model. 20 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 20 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs). 30 3.4.2.4 Considering Dynamic Increase Factors. 33 Chapter 4 - Parametric Study. 58 4.1 Case Study. 58 4.2 Building Design Criteria. 59 4.3 Applied Loads. 59 4.4 Simplified SDOF Method 60 4.5 AEM Model. 60 4.5 AEM Model. 60 4.6 Mesh Sensitivity Analysis. 63 4.7 Number of Connecting Springs. 63 4.8 Performance Based Design. 65 4.8.1 First Design. <td>1.1 General Background. 1.2 Limitations of SDOF Analysis. 1.3 Research Significance.</td> <td>1 3 4</td>	1.1 General Background. 1.2 Limitations of SDOF Analysis. 1.3 Research Significance.	1 3 4
3.1 Description of AEM 10 3.2 Reason For Choosing of AEM 12 3.3 Extreme Loading ® For Structures (ELS) 12 3.4 ELS. Program Verification 15 3.4.1 Verification Test Description 15 3.4.2 Verification Model 20 3.4.2.1 First Stage (Models With Connections Modeled as Springs) 20 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 25 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs) 30 3.4.2.4 Considering Dynamic Increase Factors 33 Chapter 4 - Parametric Study 58 4.1 Case Study 58 4.2 Building Design Criteria 59 4.3 Applied Loads 59 4.4 Simplified SDOF Method 60 4.5 AEM Model 60 4.6 Mesh Sensitivity Analysis 63 4.7 Number of Connecting Springs 63 4.8 Performance Based Design 65 4.8.1 First Design 65 4.8.2 Second Design 75	2.1 Theoretical Studies	5
4.1 Case Study. 58 4.2 Building Design Criteria. 59 4.3 Applied Loads. 59 4.4 Simplified SDOF Method 60 4.5 AEM Model. 60 4.6 Mesh Sensitivity Analysis. 63 4.7 Number of Connecting Springs. 63 4.8 Performance Based Design. 65 4.8.1 First Design. 65 4.8.2 Second Design. 75	3.1 Description of AEM 3.2 Reason For Choosing of AEM 3.3 Extreme Loading ® For Structures (ELS). 3.4 ELS. Program Verification. 3.4.1 Verification Test Description. 3.4.2 Verification Model. 3.4.2.1 First Stage (Models With Connections Modeled as Springs). 3.4.2.2 Second Stage (Models With Bolts Modeled as Solid Elements) 3.4.2.3 Third Stage (Models With Precast Wall Attached to Top Slab With Shear Springs).	10 12 12 15 15 20 20 25
4.8.2 Second Design	4.1 Case Study. 4.2 Building Design Criteria. 4.3 Applied Loads. 4.4 Simplified SDOF Method. 4.5 AEM Model. 4.6 Mesh Sensitivity Analysis. 4.7 Number of Connecting Springs. 4.8 Performance Based Design.	58 59 59 60 60 63 63 65

Contents	Page
4.8.4 Fourth Design	93
4.8.5 Fifth Design	102
4.8.6 Sixth Design	114
4.9 Effect of Top Slab	123
4.10 Resistance for wind loads	135
Chapter 5 – Discussion of Results	137
5.1 Performance Based Design Approach	137
5.2 Comparison with (SDOF) Method	139
5.3 Effect of Top Slab	141
5.4 Resistance for wind loads	142
Chapter 6 - Summary and Conclusions	143
6.1 Summary	143
6.2 Conclusions	143
6.3 Recommendations for Future Work	144
References	145

List of Figures

Figure	Description	Page
Chapter 1		
Figure 1.1	Pressure distribution on faces of structure	2
Figure 1.2	Simplified analysis for structural components	3
Chapter 2		
Figure 2.1	Side view of partial model used	6
Chapter 3		
Figure 3.1	Element generation and spring area of influence	10
Figure 3.2	Effect of number of dividing elements on wall deformation.	11
Figure 3.3	Crack formation using AEM	12
Figure 3.4	Crack formation in experiment	12
Figure 3.5	Stress-Strain curve for RC in axial stresses	13
Figure 3.6	Stress-Strain curve for RC in shear stresses	13
Figure 3.7	Stress-Strain curve for reinforcing steel in axial stresses	14
Figure 3.8	Bilinear resistance-deflection curve	14
Figure 3.9	Principal stresses determination	15
Figure 3.10	Steel stud wall	16
Figure 3.11	Precast concrete wall reinforcement details	16
Figure 3.12	Precast concrete wall panel dimensions	17
Figure 3.13	Original and idealized reflected pressure record	17
Figure 3.14	Complete Stucco system installed	18
Figure 3.15	Installation of precast solid wall	19
Figure 3.16	Experiment a Time-Displacement curve for CFSS wall	19
Figure 3.17	Steel stud wall AEM model	20
Figure 3.18	AEM complete verification model	21
Figure 3.19	Wall behavior after blast for first stage	24
Figure 3.20	Time-Displacement curve for first stage	24
Figure 3.21	Modeling of screws between stud and track for second stage	25
Figure 3.22	Modeling of fasteners between track and floor for second	
	stage	26
Figure 3.23	Wall behavior after blast for second stage	27
Figure 3.24	Behavior of fasteners and screws after blast for second stage	27
Figure 3.25	Max. normal stresses in screw	28
Figure 3.26	Max. shear stresses in screw	28
Figure 3.27	Max. normal stresses in fastener	29
Figure 3.28	Max. shear stresses in fastener	29
Figure 3.29	Time-Displacement curve for second stage	30
Figure 3.30	Difference in modeling of precast wall for third stage	30

Figure	Description	Page
Figure 3.31	Time-Displacement curve for third stage	32
Figure 3.32	Time-Displacement curve for (Modified model-14)	32
Figure 3.33	Strain rate values in concrete with respect to time at 1st	32
8	analysis	36
Figure 3.34	Strain rate values in reinforcement with respect to time at	
C	1st analysis	39
Figure 3.35	Strain rate values in concrete with respect to time at 2nd	
	analysis	42
Figure 3.36	Strain rate values in reinforcement with respect to time at	
	2nd analysis	42
Figure 3.37	Strain rate values in concrete with respect to time at 3rd	
	analysis	47
Figure 3.38	Strain rate values in reinforcement with respect to time at	
F: 2.20	3rd analysis.	47
Figure 3.39	Strain rate values in concrete with respect to time at 4th	52
Eigura 2 40	analysis	53
Figure 3.40	Strain rate values in reinforcement with respect to time at	52
Figure 3.41	4th analysis	53
rigule 3.41	considering DIF	56
Figure 3.42	Time-displacement curves for all stages.	57
Figure 3.43	Experiment a versus AEM model results	57 57
G	Experiment a versus Fierri model results	31
Chapter 4		
Figure 4.1	Outline plan for building statical system	58
Figure 4.2	Cross sectional elevation for exterior wall	59
Figure 4.3	Blast pressure loads on the building	60
Figure 4.4	Model of steel frames with foundation	61
Figure 4.5	Model of floor and roof slabs	61
Figure 4.6	Complete building model	62
Figure 4.7	Stud shear connectors model	62
Figure 4.8	Base plate connection model	63
Figure 4.9	Effect of no. of dividing elements on front wall	61
Figure 4.10	deformation Effect of number of connecting springs on front wall	64
rigule 4.10	deformation	64
Figure 4.11	Strain rate values in concrete with respect to time at 1 st	04
1 1guic 4.11	analysis of first design	67
Figure 4.12	Strain rate values in reinforcement with respect to time at	07
1 1guic 4.12	1st analysis of first design	69
Figure 4.13	Strain rate values in concrete with respect to time at	0)
1.501013	2nd analysis of first design	71

Figure	Description	Page
Figure 4.14	Strain rate values in reinforcement with respect to time at	
	2nd analysis of first design	71
Figure 4.15	Design section of front wall in 1st design	74
Figure 4.16	Interaction diagram of design section in 1st design	74
Figure 4.17	Strain rate values in concrete with respect to time at 1st analysis of second design	77
Figure 4.18	Strain rate values in reinforcement with respect to time at 1st analysis of second design	77
Figure 4.19	Strain rate values in concrete with respect to time at 2nd analysis of second design.	80
Figure 4.20	Strain rate values in reinforcement with respect to time at 2nd analysis of second design.	80
Figure 4.21	Design section of front wall in 2nd design	83
Figure 4.22	Interaction diagram of design section in 2nd design	83
Figure 4.23	Strain rate values in concrete with respect to time at 1st analysis of third design.	86
Figure 4.24	Strain rate values in reinforcement with respect to time at 1st analysis of third design.	86
Figure 4.25	Strain rate values in concrete with respect to time at 2nd analysis of third design.	89
Figure 4.26	Strain rate values in reinforcement with respect to time at	89
Figure 4.27	2nd analysis of third design	92
Figure 4.28	Interaction diagram of design section in 3rd design	92
Figure 4.29	Strain rate values in concrete with respect to time at 1st)2
1 18010 4.27	analysis of fourth design	95
Figure 4.30	Strain rate values in reinforcement with respect to time at	
Figure 4.31	1st analysis of fourth design	95
Figure 4.32	analysis of fourth design	98 98
Figure 4 22	Design section of front wall in 4th design	101
Figure 4.33 Figure 4.34	Interaction diagram of design section in 4th design	101
Figure 4.35	Strain rate values in concrete with respect to time at 1st	101
rigule 4.55	analysis of fifth design	104
Figure 4.36	Strain rate values in reinforcement with respect to time at	
Figure 4.37	1st analysis of fifth design	104
1 iguic 7.37	analysis of fifth design	107
Figure 4.38	Strain rate values in reinforcement with respect to time at 2nd analysis of fifth design	107