Relation Between Plasma Apelin level and Peripheral Neuropathy In a Sample of TYPE-2 Diabetic Egyptian Patients

Thesis
For Partial Fulfilment of Master degree
In Internal Medicine

By Zainb Yousry El-Azab Helal *M.B., B.Ch,* Faculty of Medicine-Menofia University

Supervised By

Prof. Dr. Salwa Seddik Hosny

Professor of Internal Medicine-Diabetes & Endocrinology Faculty of Medicine - Ain Shams University

Dr. Merhan Samy Nasr

Assist. Prof. of Internal Medicine-Diabetes & Endocrinology Faculty of Medicine - Ain Shams University

Dr. Rana Hashem Ibrahim

Lecturer of Internal Medicine-Diabetes & Endocrinology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University **2016-2017**

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the kind and merciful.

I would like to express my deepest gratitude and sincerest thanks to my **Prof. Dr. Salwa Seddik Hosny**, Professor of internal medicine-Diabetes LEndocrinology for giving me the privilege to work under her supervision.

Words are not enough to express my great thanks and deep appreciation to **Dr. Merhan Samy Nasr** Assist. Prof. of internal medicine-Diabetes LEndocrinology and **Dr. Rana**Hashem Ibrahim Lecturer of internal medicine-Diabetes LEndocrinology for their efforts, comments, ideas, constructive criticism and support throughout this essay.

Very special thanks to all my family especially my parents, my husband, Dr. Ahmed, my sons, Eyad and Adam and my colleagues for their support and encouragement throughout this work.

Zainb Yousry

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	12
Review of Literature	
Diabetes Mellitus	13
Diabetic Peripheral Neuropathy	42
Apelin	63
Subjects and Methods	77
Results	92
Discussion	110
Summary	119
Conclusion	
Recommendations	
References	
Arabic summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Showing differences between type one and type two diabetes	
Table (2):	Showing classification of diabetic neuropathy	
Table (3): Table (4):	Showing symptoms and signs of DSPN Demographic and laboratory data of the	56
Table (5):	comparison of parameters among the three	
Table (6):	comparison of parameters among the two studied groups diabetic patients with neuropathy (groupI) and diabetic patients	
m 11 (m).	without neuropathy (groupII)	
Table (7):	Correlation between apelin and other measured parameters in studied subjects	
Table (8):	Correlation between apelin and other measured parameters in the two studied groups Diabetic patients with neuropathy (groupI) and diabetic patients without neuropathy (groupII).	
Table (9):	Multi variant regression analysis between apelin and other measured parameters	

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Treatment algorithm for type		20
Figure (2):	Vascular supply of the perip nervous system	pheral	
Figure (3): Figure (4):	Standard insulin curve Standard apelin curve		82
Figure (5):	Normal median motor nerve cond study	uction	
Figure (6):	Normal median sensory nerve cond study		
Figure (7):	Highly significant positive correbetween apelin and age	elation	
Figure (8):	Highly significant positive correbetween apelin and diabetic duration	lation	
Figure (9):	Significant positive correlation be	tween	
Figure (10):	showing a statistical signidifference regarding age among	ficant g the	
Figure (11):	Showing a statistical signi difference regarding duration of dia	ficant	104
Figure (12):	among the studied groups Showing a statistical signidifference regarding HbA1C among	ficant	105
Figure (13):	studied groupsShowing a statistical signi		105
<i>3</i> · · · · · · · · · · · · · · · · · · ·	difference regarding fasting blood among the studied groups	sugar	106
Figure (14):	Showing a statistical signidifference regarding fasting in	nsulin	100
	among the studied groups		106

· 6 —

List of Figures cont...

Fig. No.	Title	Page No.
Figure (15):	Showing a statistical difference regarding HOMA	-IR among
Figure (16):	the studied groups Showing a statistical difference regarding apelin	significant among the
Figure (17):	studied groups Showing a statistical difference regarding total	significant
Figure (18):	among the studied groups Showing a statistical difference regarding LDL a	significant among the
Figure (19):	studied groupsShowing a statistical difference regarding HDL a	significant among the
Figure (20):	studied groupsShowing a statistical difference regarding TG a	significant mong the
Figure (21):	studied groups NCS abnormality in dial	betic poly

7 _____

List of Abbreviations

Abb.	Full term
A1C	Average blood glucose
	Activated protein kinase
<i>AP</i>	-
	Arcuate nuclei
	Blood pressure
	Cardiac autonomic neuropathy
	Coronary heart disease
	Compound muscle action potential
	Creacuve protein Cardiovascular disease
	Diabetes Control and Complications Trials
	Diabetic neuropathy
	Diabetic neuropathy Dipeptidyl peptidase-4
	Dipephayi pephaase 4 Diabetic retinopathy
DSI IV	Distal Symmetric Sensorimotor poly neuropathy
ELISA	Enzyme-linked immunosorbent one-step
	process assay
eNOS	Endothelium NO synthase
FDA	Food and Drug Administration
GDM	Gestational diabetes mellitus
GIP	glucose-dependent insulinotropic polypeptide
	Glucagon like peptide
	Glucagon-like peptide-1
	G-protein-coupled receptor

List of Abbreviations cont...

Abb.	Full term
GWAS	Genome-wide association studies
hs-CRP	high sensitive CRP
IENF	Intraepidermal nerve fibers
	Intraepidermal nerve fiber density
<i>IFG</i>	Impaired fasting glucose
<i>IGT</i>	Impaired glucose tolerance
<i>MCV</i>	Motor conduction velocity
<i>MODY</i>	Maturity-onset diabetes of the young
NeuPSIG	Pain Special Interest Group on Neuropathic Pain
<i>NPDR</i>	Nonproliferative diabetic retinopathy
<i>NPH</i>	Neutral protamine Hagedorn
<i>PDR</i>	Proliferative diabetic retinopathy
<i>PPAR</i>	Peroxisome proliferator-activated receptor
PVN	Paraventricular
QSART	Quantitative sudomotor axon reflex test
ROS	Reactive oxygen species
<i>RYGB</i>	Roux-en-Y gastric bypass
SCV	Sensory conduction velocity
SFN	Small fiber neuropathy
SGLT2	Sodium-Glucose co transporter 2
<i>SMBG</i>	Self-monitoring of blood glucose
<i>SNAP</i>	Sensory nerve action potential
SON	Supraoptic
SUs	Sulfonylureas
UKPDS	United Kingdom Prospective Diabetes Study
<i>VEGF</i>	Vascular endothelial growth factor
WHO	World Health Organization

Introduction

ype two Diabetes mellitus is a metabolic disorder L characterized by the presence of hyperglycemia due to defective insulin secretion, defective insulin action or both. The chronic hyperglycemia of diabetes is associated with relatively specific long-term microvascular complications affecting the eyes, kidneys and nerves, as well as an increased risk for cardiovascular disease (CVD) (ADA, 2012).

Prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The urban population in developing countries is projected to double between 2000 and 2030. The prevalence of diabetes increases with increasing prevalence of obesity (ADA, 2004)

Excess weight is an established risk factor for type 2 diabetes. There are many links between obesity and type 2 diabetes involving pro inflammatory cytokines [TNF & IL-6], insulin resistance, deranged fatty acid metabolism and cellular processes such as mitochondrial dysfunction and endoplasmic reticulum stress (Robert et al., 2011).

Peripheral neuropathy is one of the most common complications of both type one and type two diabetes (Abott et al., 2002).

Long standing peripheral neuropathic pain associated with peripheral neuropathy occurs in one of six diabetic subjects (Daousi et al., 2004).

In diabetes a complex array of metabolic, vascular and perhaps hormonal factors shift the balance between nerve fiber damage and nerve fiber repair in favor of the former (Callaghan et al., 2012). This occurs in a fiber selective pattern that preferentially affects distal sensory and autonomic fibers, leading to the progressive loss of sensation that underlies the clinical manifestations of diabetic neuropathy (Edwards's et al., 2008).

Among the ischemic factors, endothelial dysfunction may be especially important, particularly in patients with type 2 diabetes mellitus in pathogenesis of neuropathy (*Kilos et al.*, 2000).

Apelin is a peptide that was identified in 1998 by Professor M. Fujino's team. Apelin is a peptide secreted from adipocytes up regulated in obese state that displays beneficial effects. It lowers blood pressure, modulates pituitary hormone release, food and water intake and regulate insulin (*Lee et al.*, 2006).

Apelin level seems to be beneficial in early detection of diabetic neuropathy. It is noted that it increases in diabetic patients compared with healthy control subjects. When the apelin level was evaluated with regard to the presence of neuropathy; diabetic patient with neuropathy had significantly higher apelin level than the healthy control subjects (Hakan et al., 2009).

AIM OF THE WORK

The aim of this work is to study the relation between plasma apelin level and peripheral neuropathy in a sample of type 2 diabetic Egyptian patients.

. 12

Chapter One

DIABETES MELLITUS

Diabetes is a complex, chronic illness requiring continuous medical care with multifactorial risk-reduction strategies beyond glycemic control. Ongoing patient self-management education and support are critical to preventing acute complications and reducing the risk of long-term complications. Significant evidence exists that supports a range of interventions to improve diabetes outcomes (ADA, 2017).

Diabetes is a serious, chronic disease that occurs either when the pancreas does not produce enough insulin (a hormone that regulates blood glucose), or when the body cannot effectively use the insulin it produces. Raised plasma glucose, a common effect of uncontrolled diabetes, may, over time, lead to serious damage to the heart, blood vessels, eyes, kidneys and nerves. More than 400 million people live with diabetes (*WHO*, *2016*).

In 2016, 422 million people have diabetes worldwide, up from an estimated 382 million people in 2013 and from 108 million in 1980. Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980 (*Shi and Hu*, 2014).

The World Health Organization (WHO) estimates that diabetes mellitus resulted in 1.5 million deaths in 2012, making it the 8th leading cause of death. However another 2.2 million

deaths worldwide were attributable to high plasma glucose and the increased risks of cardiovascular disease and other associated complications (e.g. kidney failure), which often lead to premature death and are often listed as the underlying cause on death certificates rather than diabetes (*WHO*, 2016).

Types of diabetes mellitus

Diabetes can be classified into the following general categories (*ADA*, 2017).

- 1. Type 1 diabetes (due to autoimmune B-cell destruction, usually leading to absolute insulin deficiency)
- 2. Type 2 diabetes (due to a progressive loss of B-cell insulin secretion frequently on the background of insulin resistance)
- 3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation)
- 4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation).
- 5. Prediabetes mellitus; impaired fasting glucose and impaired glucose tolerance.

Impaired fasting glucose (IFG) refers to a condition in which the fasting plasma glucose or the 3-month average plasma glucose (A1C) is elevated above what is considered normal levels but is not high enough to be classified as diabetes mellitus. It is considered a pre-diabetic state, associated with insulin resistance and increased risk of cardiovascular pathology, although of lesser risk than impaired glucose tolerance (IGT). IFG sometimes progresses to type 2 diabetes mellitus. There is a 50% risk over 10 years of progressing to overt diabetes. Many newly identified IFG patients progress to diabetes in less than three years. IFG is also a risk factor for mortality (*Nichols et al.*, 2007).

Impaired glucose tolerance (IGT) is a pre-diabetic state of dysglycemia, that is associated with insulin resistance and increased risk of cardiovascular pathology. IGT may precede type 2 diabetes mellitus by many years. IGT is also a risk factor for mortality (*Barr et al.*, 2007).

Etiology of diabetes

Causes of type 1 diabetes mellitus: Many theories are identified (NIH, 2014).

 Genetic Susceptibility: many risk genes or gene regions have been identified to be related to type 1 diabetes. The most important are HLA-DR3 and HLA-DR4 genes.