

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

WATER AND FERTILIZER REQUIRMENTS OF RICE CROP IN SOME SOILS OF DELTA REGION

A THESIS

Presented to the Graduate School
Faculty of Agriculture
(Saba-Bacha)
Alexandria University

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY OF AGRICULTURAL SCIENCES

IN

(SOIL & WATER)

BY

AZMY EL-SHERBENY EL-SHERBENY EL-SHARABASY

B 1-00E

2001

Faculty of Agric. (Saba-Bacha)
Soil and Agric. Chemistry Dept.,

WATER AND FERTILIZER REQUIRMENTS OF RICE CROP IN SOME SOILS OF DELTA REGION

Presented by

AZMY EL-SHERBENY EL-SHARABASY

For the degree of

DOCTOR OF PHILOSOPHY OF AGRICULTURAL SCIENCE (SOIL & WATER)

Examiner's Committee:

Approved

S.A. Gahew

Prof. Dr. S.A. Gaheen

Prof. of Soil Science, Faculty of Agriculture, Kagr El-Sheikh, Tanta University.

Prof. Dr. H.A. Zeid

Prof. of Soil Science. Faculty of Agriculture. Saba-Bacha, Alexandria University

Prof. Dr. M.A. Gomaa

Prof. of Agronomy and Vice Dean for Education and Students Affairs, Faculty of Agriculture, Saba-Bacha, Alexandria University.

Dr. G.A. Sharaf

Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Saba-Bacha, Alexandria University.

H-AZwl

M.A.Games

ADVISOR'S COMMITTEE

Prof. Dr. M.G. Nasseem

Prof. and the Chairman of Soil & Agric. Chemistry Dept., Fac. of Agric., (Saba Basha), Alex. University

Prof. Dr. H.A.A. Zeid

Prof. of Soil Science Fac. of Agric., (Saba Basha), Alex. University

Dr. Gamal A. Sharaf

Associate Prof. Of Agricultural Engineering, Fac. of Agric., (Saba Basha), Alex. University

CONTENTS

CONTENTS

	Page No.
ACKNOWLEDGEMENT	
INTRODUCTION	1
REVIEW OF LITRATURE	3
I. Effect of irrigation management on	3
I.1. Growth, yield and yield components of rice	3
I.2. Nitrogen, phosphorus and potassium content of rice	8
I.3. Effect of different levels of nitrogen, phosphorus and	
potassium application on	9
I.3.1. Growth, yield and yield components of rice	9
I.3.1.1. Nitrogen	9
I.3.1.2. Phosphorus	14
I.3.1.3. Potassium,	15
II. Relationship between fertilizers and yield of rice	21
III. Water requirements and consumptive use of rice	22
IV. Effect of paddy cultivation of rice on some chemical	
properties of soil	32
MATERIALS AND METHODS	35
I. Field and pot experiments	35
I.1. Location and meteorological features	35
I.2. Irrigation treatments	35
I.3. Experiment 1 (The effect of water management on rice	
yield, water consumptive use and water requirements)	35
I.4. Water requirements and consumptive use of rice	36
I.5. Experiment 2 (Effect of water management and	
different rates of NPK fertilizer on rice)	40
I.6. Experiment 3 (Effect of different levels of nitrogen	
application on water consumptive use of rice plants	
under different levels of soil moisture	40
I.7. Fertilization treatments	40
I.7.1. Experiment 1	40
I.7.2. Experiment 2	41
I.7.3. Experiment 3	4.1
I.8. Experimental design	43
I.8.1. Experiment 1	43
I.8.2. Experiment 2	43
I.8.3. Experiment 3	43

	Page No
I.9. Cultural practices	43
I.9.1. Experiment 1 and 2	43
I.9.2. Experiment 3	45
I.10. Yield and its components	45
II. Plant analysis	47
III. Soil analysis	47
IV. Statistical analysis	50
RESULTS AND DISCUSSION	51
I.1. Effect of irrigation treatments on	53
I.1.1. Percentage of filled grains and 1000-grain weight	53
I.1.2. Grain and straw yield of rice	53
I.1.3. Concentration of nitrogen in grains	58
I.1.4. Concentration of phosphorus in grains	60
I.1.6. Concentration of N, P and K in straw	60
I.1.7. Evaporation, Transpiration and Percolation	62
I.2. Potential Evapotranspiration	62
I.3. Rice crop coefficient	65
I.4. Water use efficiency	65
I.5. Soil chemical properties	71
II.1. Main effect of irrigation treatments	77
II.1.1. Percentage of filled grains and 1000-grain weight	77
II.1.2. Grain and straw yields	81
II.1.3. Nitrogen uptake	81
II.1.4. Phosphorus uptake	88
II.1.5. Potassium uptake	92
II.2. Main effect of NPK fertilizer rates	92
II.2.1. Effect of nitrogen levels	92
II.2.1.1. Percentage of filled grains and 1000-grain	
weight	92
II.2.1.2. Grain and straw yield	99
II.2.1.3. Nitrogen use efficiency	105
II.2.1.4. Nitrogen uptake and recovery	105
II.2.1.5. Uptake of phosphorus and potassium	110
II.2.2. Effect of phosphorus levels	120
II.2.2.1. Percentage of filled grain and 1000-grain	
weight	120
II.2.2.2. Grain and straw yields	120
II.2.2.4. Phosphorus and recovery of rice	129
II.2.2.5. Uptake of nitrogen and potassium	129

	Page No.
II.2.3. Effect of potassium levels	141
II.2.3.1. Percentage of filled grains and 1000-grain	
weight	141
II.2.3.2.Grain and straw yields of rice	141
II.2.3.3. Potassium use efficiency	150
II.2.3.4. Potassium uptake and recovery of rice	152
II.2.3.5. Uptake of N and P of rice	157
III.1. Grain yield	165
III.2. Nitrogen concentration in rice shoots	169
III.3. Water consumptive use of rice	169
SUMMARY AND CONCLUSION	175
REFERENCES	185
ARABIC SUMMARY	•

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

I wish to express my faithful gratitude to Dr.M.G.Nasseem, Prof. And the Chairman of Soil & Agric. Chemistry Dept., Fac. Of Agric. (Saba Basha), Alexandria University, for keen supervision, great help, guidance and continued assistance in writing and preparing the thesis.

Great thanks are also to Dr. H.A. A. Zeid, Prof. of soil science, Soil & Agric. Chemistry Dept., Fac. Of Agric. (Saba Basha), Alexandria University, for his assistance and encouragement during this work.

The author is also grateful to Dr. Gamal A. Sharaf Associate Prof. of Agric. Engineering, Fac. Of Agric. (Saba Basha), Alexandria University, for his continuous help throughout this work.

Also, I wish to express my particular and grateful thanks to my parents, all my brothers and my wife, who helped me to continue my research study and complete this thesis. To them I dedicate this thesis.

