Computer Assisted Total Knee Arthroplasty

Thesis
Submitted for partial fultIllment of M.D. degree in orthopedic surgery

By

Eltayeb Mahmoud Nasser Eltayeb

Under supervision of

Prof. Dr. Mahmoud Ahmed El-sebai

Professor of orthopedic surgery Faculty of medicine. A in shams university

Dr. Nabil Abd Elmoneam Ghaly

Ass. Professor of orthopedic surgery Faculty of medicine. A in shams university

Prof. Dr. Emil H. Schemitsch

Head, Division of Orthopedic Surgery St. Michael 's Hospital, University of Toronto

Prof. Dr. Mahmoud A. Hafez

Professor of orthopedic surgery Faculty of medicine, October 6th University

Faculty of Medicine
A in Shams University
2009

Acknowledgement

I would like to express my special thanks to **Prof. Dr. Mahmoud Ahmed El-sebai**, Professor of orthopaedic surgery, faculty of medicine - Ain Shams University for his scholarly advice and kind assistance during all the phases of this work.

I am also expressing my deepest gratitude and appreciation to **Prof. Dr. Nabil Abd Elmoneam Ghaly**, Professor of orthopedic surgery, faculty of medicine - Ain Shams University for his great support, and fatherly guidance throughout this work.

Many thanks to **Prof. Dr. Emil H. Schemitsch,** Head, division of Orthopedic surgery St. Michael's Hospital, University of Toronto for his kind guidance throughout this work.

I am also greatly indebted to **Prof. Dr. Mahmoud A. Hafez** for his diligence and friendly cooperation and guidance until this work was accomplished.

Sincere thanks are also extended to all my senior staff and colleagues in the orthopedic department for their valuable remarks and faithful cooperation.

Eltayeb Mahmoud Nasser

CONTENTS

List of Abbreviations List of Tables List of Figures

Introduction and Aim of the Work	1-3
Review of Literature	4-73
Anatomical consideration	4-31
 Biomechanics of the Knee Joint 	32-55
Pathology	56-58
• TKR	59-60
 Computer Assisted Surgery 	61-73
1. Introduction61-64	
2. History65-69	
3. Definition70	
4. Classification70-73	
Patients and Methods	74-104
Results1	105-121
Discussion1	122-130
Case Presentation	131-147
Summary	148-149
Conclusions	150-151
References	.152-161
Arabic Summary	162-164
Protocol	

List of abbreviations

ACL Anterior cruciate ligament

AP Anterposterior

CAS Computer assisted surgery

LCL Lateral collateral ligament

NSAID Non Steroidal Antiinflamatory Drug

MCL Medial collateral ligament

Min Minutes

MI Milliliters

PCL Posteriro cruciate ligament

RA Rhumatoid arthritis

TKA Total knee arthroplasty

TKR Total knee replacement

USA United States of America

List of Tables

- Table: 1 Classification of Computer-Assisted Orthopedic Surgery Systems Table 2: Types of Tracking Devices
- Table (3) Comparison between both groups CN and EN as regard general data
- Table (4) Comparison between both groups CN and EN as regard axis deviation
- Table (5) Comparison between both groups CN and EN as regard MDFA
- Table (7) Comparison between both groups CN and EN as regard MPTA
- Table (8) Comparison between both groups CN and EN as regard PPTA
- Table (9) Comparison between both groups CN and EN as regard operative time
- Table (10) Comparison between both groups CN and EN as regard I blood loss
- Table (11) Comparison between both groups CN and EN groups versus EC as regard general data
- Table (12) Comparison between both groups CN and EN groups versus EC group as regard axis deviation
- Table (13) Comparison between both groups CN and EN groups versus EC group as regard MDFA
- Table (14) Comparison between both groups CN and EN groups versus EC group as regard PDFA
- Table (15) Comparison between both groups CN and EN groups versus EC group as regard MPTA
- Table (16) Comparison between both groups CN and EN groups versus EC group as regard PPTA
- Table (17) Comparison between both groups CN and EN groups versus EC group as regard operative time
- Table (18) Comparison between both groups CN and EN groups versus EC group as regard blood loss

List of Figures

- Fig.1: Anatomic dissection of the anterior knee
- Fig.2: Diagrammatic dissection of the anterior knee
- Fig.3: Patella
- Fig. 4: patellofemoral contact zones change with knee flexion
- Fig. 5: Femur, distal end
- Fig. 6: The epicondylar axis
- Fig. 7 Whiteside line perpendicular to the Transepicondylar axis
- Fig. 8 Bony landmarks with ligament and tendon
- Fig. 9 Bony landmarks with ligament & tendon attachment sites
- Fig. 10 Superior aspect of the tibial plateau
- Fig. 11 A, Anterior cruciate ligament and (B) posterior cruciate ligament
- Fig. 12: Four components of the quadriceps muscle
- Fig. 13: Quadriceps group
- Fig. 14: Q angle
- Fig. 15: A, Medial aspect of the knee, layer 1
- Fig: 16: A, Medial aspect of the knee, layer 2
- Fig. 17: Medial aspect of the knee, layer 3
- Fig. 18: Lateral aspect of the knee, layer 1
- Fig. 19: A, Medial aspect of the knee, layer 2
- Fig. 20: Lateral aspect of the knee, layer 3
- Fig. 21: A, Posterior aspect of the knee
- Fig. 22: Superficial neurovascular structures of the anterior aspect of knee
- Fig. 23: Mechanical axis of the lower limb
- Fig. 24: The mechanical axis.
- Fig. 25: Knee center of rotation
- Fig. 26: Q angle
- Fig. 27: Motion in knee
- Fig. 28: This model attempts to incorporate all data that have been generated about the kinematics of the human knee joint
- Fig. 39: Simultaneous rolling and gliding
- Fig 30: J-shaped centre of rotation
- Fig 31: Screw home mechanism
- Fig. 32: Force distribution in the knee in single leg stance
- Fig. 33: Forces exerted on the knee in single leg stance in the sagittal plane
- Fig. 34: Medial thrust of the femur indicates shift of the femur medially on the tibia through the stance phase of gait in the coronal plane
- Fig. 35: Forces exerted on the knee during heel strike of stance phase
- Fig. 36: Forces exerted on the knee during mid-stance phase
- Fig. 37: The mechanical axis (A) usually corresponds to a femorotibial angle
- (B) of about 7 degrees and intersects the medial femoral cortex
- Fig. 38: Computer assisted surgery unit components
- Fig. 39: Components of a fluoroscopy-based navigation system
- Fig. 40: Schematic representation of tracking and registration for an imagefree navigation system
- Fig. 41 Straight longitudinal anterior skin incision
- Fig. 42: Medial arthrotomy
- Fig. 43: Femoral intramedullary starting hole
- Fig. 44: Chamfer Cuts

- Fig. 45: Extramedullary alignment guide
- Fig. 46: Rectangular flexion and extension gaps
- Fig. 47 Osteotome inserted deep to periosteal flap or MCL
- Fig. 48: Stryker's Navigation System
- Fig. 49: The pointer
- Fig. 50: Adjustable mechanical jig
- Fig. 51: Rigid attachment of femur and tibia trackers. Pointer collecting data
- Fig. 52: screw-pin device
- Fig. 53: Knee trackers anchored proximally and distally in the knee incision
- Fig. 54: Battery
- Fig. 55: Checking the distal femoral cut
- Fig. 56: Anteroposterior tibial axis
- Fig. 57: Bone Cut planning and navigation
- Fig. 58: Bone cut verification
- Fig. 59: Screen shot after bone cuts were done
- Fig. 60: Intra-operative Setup with two reference arrays rigidly attached to both the femoral and the tibial bone
- Fig. 61: Pointer with reflecting marker spheres
- Fig. 62: Screen shot of the knee rotational alignment setup
- Fig. 63: Comparison between both groups CN and EN as regard axis deviation
- Fig. 64: Comparison between both groups CN and EN as regard MDFA
- Table (6) Comparison between both groups CN and EN as regard PDFA
- Fig. 65: Comparison between both groups CN and EN as regard PDFA
- Fig. 66: Comparison between both groups CN and EN as regard MPTA
- Fig. 67: Comparison between both groups CN and EN as regard PPTA
- Fig. 68: Comparison between both groups CN and EN as regard operative time
- Fig. 69: Comparison between both groups CN and EN as regard I blood loss
- Fig. 70: Comparison between both groups CN and EN groups versus EC group as regard axis deviation
- Fig. 71: Comparison between both groups CN and EN groups versus EC group as regard MDFA
- Fig. 72: Comparison between both groups CN and EN groups versus EC group as regard PDFA
- Fig. 73: Comparison between both groups CN and EN groups versus EC group as regard MPTA
- Fig. 74: Comparison between both groups CN and EN groups versus EC group as regard PPTA
- Fig. 75: Comparison between both groups CN and EN groups versus EC group as regard operative time
- Fig. 76: Comparison between both groups CN and EN groups versus EC group as regard blood loss

INTRODUCTION

Total knee replacement (TKR) is one of the most clinically successful and cost-effective interventions in orthopaedics; and even in all surgical practice. However, implant malalignment is a common cause of failure following total knee replacement. *Erik J., et al 2007*

- S. David et al in 2002 summarized that the success of total knee replacement surgery depends on several factors, including:
 - 1. Proper patient selection.
 - 2. Appropriate implant design.
 - 3. Correct surgical technique.
 - 4. Effective perioperative care.

In their work they also concluded that the outcome of total knee replacement surgery is particularly sensitive to variations in surgical technique. *David S., et al 2002*

It is now agreed on that the long-term total knee replacement results depend on lower limb realignment, proper implant positioning and sufficient ligament balancing. Improper alignment of the limb, Incorrect positioning or orientation of the implant and ineffective ligament balancing at the end of the surgical procedure can lead to accelerated implant wear and loosening as well as suboptimal functional performance. *Jacques D., 2008*

A number of studies have suggested that alignment errors of >3° are associated with more rapid failure and less satisfactory functional results after total knee replacement. *Werner et al., 2005*

Recent studies have also emphasized that the most common cause for revision total knee replacement is error in surgical technique. *David S., et al 2002*

Trying to investigate this problem a number of studies have examined the accuracy of traditional mechanical alignment guides used for total knee replacement and have demonstrated that while the majority of components are correctly positioned, there are a substantial number of outliers where positioning is outside of the ideal range.

Recently, computer-assisted surgical navigation systems have been developed and employed for total knee replacement. The majority of studies examining computerassisted surgery have shown more consistent restoration of neutral mechanical alignment, with improved precision of component placement in one or more of the measured anatomic planes, as compared with mechanical guides. In particular, most studies have demonstrated consistently better alignment in the coronal plane, with significantly fewer outliers. Proponents of computer-assisted surgery have argued that the improved consistency of alignment seen in association with computer navigation will improve implant longevity and decrease revision rates. Outcome studies have shown that component alignment in the coronal plane affects both functional success component longevity. Components placed in a varus or valgus alignment have a higher rate of loosening and revision when compared with components placed in neutral alignment. Erik J., et al 2007

Aim of the Work

The aim of this study is to compare between navigated total knee replacement and conventional TKR.

The objectives are to measure postoperative radiological alignment in each arm of the study.

Also to look at other important parameters, such as blood loss, operative time and complications.

ANATOMICAL CONSIDERATIONS

The knee joint is a modified hinge of synovial joint. It is the largest and most complicated articulation in the human body. It permits mainly flexion and extension movements, and small amount of rotation of the leg in the flexed position of the knee. It is described as a compound joint that includes two condylar joints between the femur and the tibia and a saddle joint between the patella and the femur. *Chummy S., 1999*

The stability and mobility of the knee are dependent on complex interactions between:

- I- Osseous factors (shape of the articulating surfaces)
- II- Soft tissue factors:

A-Passive stabilizers (capsule, menisci and ligaments).

B-Active stabilizers (muscles). *Resnick D. and Niwayama G.*, 1995

Fig.1: Anatomic dissection of the anterior knee. *Insall J. and Scott D., 2006*

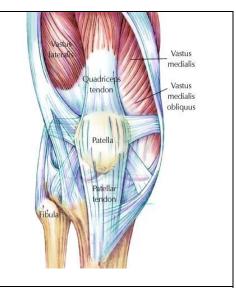


Fig.2: Diagrammatic dissection of the anterior knee. *Insall and J. Scott D., 2006*

[I] Bony Architecture

The osseous structures of the knee consist of three components:

- 1- The patella.
- 2- The distal femoral condyles.
- 3- The proximal tibial plateaus or condyles. Robert E., 1988

1) Patella:

The patella is the largest sesamoid bone in the body and sits in the femoral trochlea. It is asymmetric oval in shape with the apex distally. The fibers of the quadriceps tendon envelop it anteriorly and blend with the patellar ligament distally. The articulation between the patella and femoral trochlea forms the anterior or patellofemoral compartment. *Philippe S., 1983*

The posterior aspect of the patella is described as possessing seven facets.

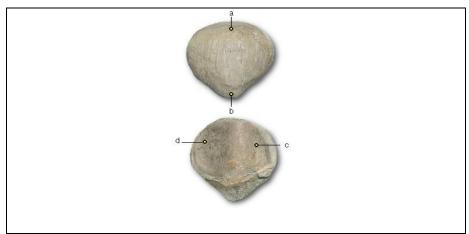


Fig.3: Patella, anterior surface a: base, b: apex, posterior surface c: med facet, d: lat facet. *Insall and J. Scott D., 2006*

The main biomechanical function of the patella is to increase the moment arm of the quadriceps mechanism. *Moore K.*, 2002

Patello-femoral articulation:

The articulation between the patella and the femoral trochlea forms the anterior or patellofemoral compartment. The medial facet is smaller and slightly convex. The facets are covered by the thickest hyaline cartilage in the body, which may measure up to 6.5 mm in thickness. The femoral trochlea is separated from the medial and lateral femoral condyles by indistinct ridges; the lateral ridge is more prominent. The patella fits in the trochlea imperfectly, and the contact patch between the patella and femur varies with position as the patella sweeps across the femoral

condyles. The main function of the patella is to increase the moment arm of the quadriceps mechanism. *Eckhoff D. et al.*, 1996

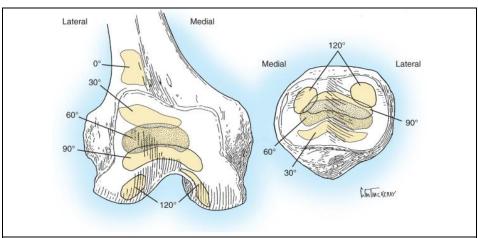
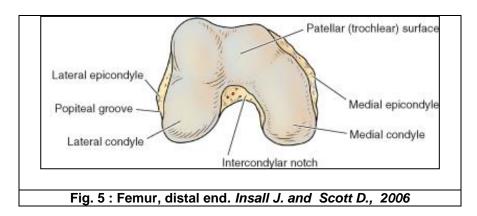



Fig. 4: Patellofemoral contact zones change with knee flexion. *Aglietti P.*, et al 1975

2) Femur:

In shape and dimensions, the femoral condyles are asymmetric, with the larger medial condyle having a more symmetric curvature. The lateral condyle viewed from the side has a sharply increasing curvature posteriorly. The femoral condyles viewed from the surface articulating with the tibia show that the lateral condyle is slightly shorter than the medial. The long axis of the lateral condyle is slightly longer than the long axis of the medial condyle and is placed in a more sagittal plane, while the medial is placed at an angle of about 22 degrees on average. The width of the lateral condyle is slightly greater than that of the medial condyle at the center of the intercondylar notch. The lateral condyle has a short groove just proximal to the articular margin, in which lies the tendinous origin of the

popliteus muscle. This groove separates the lateral epicondyle from the joint line.

The lateral epicondyle is a small but distinct prominence to which attaches the lateral (fibular) collateral ligament. On the medial condyle, the prominent adductor tubercle is the insertion site of the adductor magnus. The medial epicondyle lies anteriorly and distally to the adductor tubercle and is a C-shaped ridge with a central depression or sulcus. Rather than originating from the ridge, the medial collateral ligament (MCL) originates from the sulcus. *Henry D. et al.*, 2006

Anteriorly, the condyles are somewhat flattened which provides a greater surface for contact and weight transmission. The condyles project very little in front of the femoral shaft but markedly so behind. *Verdi V et al.*, 1999

Both condyles blend anteriorly to create a shallow concave trochlear groove. Posteriorly, the condyles are separated by the intercondylar notch. *Dodds J et al.*, 1994

The trochlea is located on the anterior distal end of the femur. There is an anteroposterior groove at the middle of the trochlea that divides it into two facets; the lateral