

# 





ثبكة المعلومات الجامعية





## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية







#### TANTA UNIVERSTY FACULTY OF ENGINEERING

### Fuzzy Logic and Genetic Algorithms Applied to Intelligent Control System Design

Thesis submitted to
The Computers and Automatic Control Department

Master of Science

Eng. Ahmed Ahmed Mohamed Ramadan,
B.Sc. in Electrical Engineering (computers and Automatic control)

#### SUPERVISED BY

Prof. Dr. Mohamed Talaat Faheem
Vice Dean for Society Service and
Environmental development Affairs,
of. of Computers and Automatic Control
aculty of Engineering - Tanta University

Prof. Dr. Ahmed Foad Amer
AAST President Assistant for European
Cooperation, Prof. of Automatic Control
College of Engineering and Technology
Arab Academy for Science and Technology

2002

B . No. C

## TANTA UNIVERSTY FACULTY OF ENGINEERING

## Fuzzy Logic and Genetic Algorithms Applied to Intelligent Control System Design

Thesis submitted to
The Computers and Automatic Control Department

Master of Science

By

Eng. Ahmed Ahmed Mohamed Ramadan

B.Sc. in Electrical Engineering (computers and Automatic control)

#### APPROVED BY

Prof. Dr. Hussien Sayed Tantawy

Prof. in Computers and Systems Eng. Dept. Faculty of Engineering – Azhar University

Prof. Dr. Mohamed Talaat Faheem

Prof. in Computers and Automatic Control Dept.-Faculty of Engineering - Tanta Uni.

Prof. Dr. Mohamed Mahrouk Sharaf

Prof. in Industrial Electronics and Control Engineering Dept. – Menoufya University

Prof. Dr. Ahmed Foad Amer

Prof. in Electrical Engineering and Computer Control Dept. - AASTMT

2002

## بنالية الخالقانية

राद्री ६६ ६६६६६ विव

थ ने थ थ थ

ではりいいかられているというという

#### Acknowledgements

First of all, I would like, with my sincerest gratitude, to thank my supervisors, *Prof. Dr. Mohamed T. Faheem, and Prof. Dr. Ahmed F. Amer.* They have helped me to the utmost of their ability and been patient and understanding at all times. I am proud of working under their capable supervision.

Extra special thanks to my supervisor, *Prof. Dr. Ahmed F. Amer*, for his availability, his friendliness, his support, and his calmness in the most desperate moments, and for his full confidence in me all the time. He has always been a source of reassurance and encouragement.

Finally, I want to express my gratitude to the staff of Computer and Automatic Control Department in Tnata Faculty of Engineering especially *Prof. Dr. Mahmoud Fahmy* and to the staff of Electrical and Computer Control Department in Arab Academy for science and Technology (AAST) for their support and encouragement. To all of those who helped in a way or another, I express my gratitude.

#### Dedication

I would like to dedicate this dissertation to my great parents, my brothers, and my sisters who have supported and encouraged me throughout my academic career. Thanks for showing infinite patience and the will to always listen to me in the most troublesome moments during my work in this thesis.

Ahmed A. Ramadan

#### **Abstract**

The design methods of fuzzy logic controllers (FLCs) using the genetic algorithms (GAs) are appearing as systematic methods. These methods easily provide an optimized design and form the framework for further progress. This thesis describes the optimal design of P-, PI-, PD-, PID-like FLCs based on theoretical fuzzy concepts and genetic-based optimizations. In the case of PI-like FLC, the most important feature of the proposed controller is its simple structure consisting of three gain factors and a FLC with each of the two inputs and the output has only three membership functions. Through GAs, the optimal values for the gain factors associated with each of the inputs and the output of the FLC is achieved without changing the membership functions or the rule-base of the FLC itself.

The proposed method is applied to the problem of designing an optimal PI-like fuzzy logic speed controller for an induction motor [Kao & Liu 92], one time without limiting the output of the controller and another time with limiting the output of the controller. The performance of the compensated system is judged compared to that of conventional PI and genetic-based PI controllers. Good simulation results were obtained using the proposed method, which produced superior control performance in handling plant parameter changes and in speeding up the response.

#### Table of Contents

| 1 | Intr | oductior                           | ı                                                | 1        |
|---|------|------------------------------------|--------------------------------------------------|----------|
|   | 1.1  | Fuzzy                              | Logic and Fuzzy Control                          | 1        |
|   | 1.2  |                                    | tionary and Genetic Computation                  | 3        |
|   | 1.3  |                                    | tives                                            | 5        |
|   | 1.4  |                                    | Contributions                                    | 6        |
|   | 1.5  |                                    | s Outline                                        | 6        |
| 2 | Fuzz | zy Contr                           | ol Theory                                        | 8        |
|   | 2.1  | Introd                             | uction                                           | 8        |
|   | 2.2  | Historical Overview                |                                                  |          |
|   | 2.3  |                                    |                                                  | 9        |
|   |      | 2.3.1                              | How Tall?                                        | 11<br>12 |
|   | 2.4  | Fuzzy                              | Operations                                       | ,        |
|   | 2.5  |                                    | Inference and Expert Systems                     | 15       |
|   |      | 2.5.1                              | Fuzzification and defuzzification                | 18       |
|   |      | 2.5.2                              | Defuzzification Methods                          | 18<br>22 |
|   |      |                                    | 1. Center-of-Area (COA) Defuzzification          | 22       |
|   |      |                                    | 2. Mean-of-Maxima (MOM) Defuzzification          | 23       |
|   |      |                                    | 3. Height (weighted average) Defuzzification     | 23       |
|   |      | 2.5.3                              | Fuzzy Implications and Approximate Reasoning     | 23<br>24 |
|   |      |                                    | Zadeh Max-Min Implication Operator               |          |
|   |      |                                    | Mamdani Min Implication Operator                 | 25<br>25 |
|   |      |                                    | 3. Larsen Product Implication Operator           | 25<br>25 |
|   |      | 2.5.4                              | Overview of a Complete Fuzzy System              |          |
|   | 2.6  | Importa                            | ance of Fuzzy Logic and Fuzzy Control            | 27<br>29 |
|   | 2.7  | Structure of Furna Laria Co. 4. 11 |                                                  |          |
|   |      |                                    | re of PI-, PD-, PID-like Fuzzy Logic Controllers | 31       |
|   |      | ~ ~~                               | or , - D , 1 1D -11Ke 1 uzzy Logic Controllers   | 33       |

|   |      | 2.8.1   | PI-like Fuzzy Logic Controller Structure             | 33 |
|---|------|---------|------------------------------------------------------|----|
|   |      | 2.8.2   | PD-like Fuzzy Logic Controller Structure             | 34 |
|   |      | 2.8.3   | PID-like Fuzzy Logic Controller Structure            | 35 |
|   | 2.9  | Fuzzy   | System Applications                                  | 36 |
|   |      | 2.9.1   | Control                                              | 36 |
|   |      | 2.9.2   | Artificial Intelligence (AI)                         | 37 |
|   |      | 2.9.3   | Robotics                                             | 37 |
|   | 2.10 | Design  | n of PID-like Fuzzy Logic Controller                 | 38 |
|   | 2.11 |         | packs of Fuzzy Logic                                 | 42 |
|   | 2.12 |         | nary                                                 | 42 |
|   |      |         |                                                      | ,  |
| 3 | Gene | tic and | Evolutionary Algorithms                              | 43 |
|   | 3.1  | Introd  | uction                                               | 43 |
|   |      |         | ical Overview                                        | 44 |
|   | 3.3  |         | iew of Search/Optimization Techniques                | 45 |
|   | 3.4  |         | ard Architecture of Genetic/Evolutionary Algorithms  | 48 |
|   | 3.5  |         | c/Evolutionary Algorithms in Detail                  | 51 |
|   |      | 3.5.1   | Population Size                                      | 52 |
|   |      | 3.5.2   | Fitness Function (Objective Function)                | 52 |
|   |      | 3.5.3   | Selection Mechanism                                  | 53 |
|   |      | 3.5.4   | Genetic Operators (Crossover and Mutation)           | 54 |
|   |      |         | 1. Crossover Operator (Recombination)                | 54 |
|   |      |         | 2. Mutation Operator                                 | 55 |
|   |      | 3.5.5   | Encoding Mechanism                                   | 56 |
|   | 3.6  | A Hand  | d Worked Example                                     | 57 |
|   | 3.7  |         | tical Issues of Genetic Algorithms                   | 60 |
|   |      | 3.7.1   | Non-Linearity and Epistasis                          | 61 |
|   |      | 3.7.2   | The Schema Theorem and the Building Block Hypothesis | 61 |
|   |      |         | 1. Schemata                                          | 61 |
|   |      |         | 2. The Building Block Hypothesis                     | 62 |
|   |      |         | 3. Schemata as Hyperplanes                           | 63 |

|        |                       | 4. Limitations on the Schema Theorem                                                                              | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 3.7.3                 | Other Analyses of Genetic Algorithms                                                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       | 1. Walsh Function Analysis                                                                                        | . 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                       | 2. Markov Chain Analysis                                                                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       | 3. Criticisms of the Building Block Hypothesis                                                                    | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.8    | Adva                  | nced Operators and Techniques in Genetic Search                                                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.1                 | Selection Schemes                                                                                                 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.2                 |                                                                                                                   | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.3                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 3.8.4                 | Advanced Operators                                                                                                | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.5                 |                                                                                                                   | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.6                 |                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.7                 | Micro Genetic Algorithms (μGA)                                                                                    | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.8.8                 | Steady State Genetic Algorithms                                                                                   | 73<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.9    | Applica               | ations                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.10   |                       |                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.10.1                |                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 3.10.2                | Artificial Life                                                                                                   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.11   | Conclus               | sion                                                                                                              | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                       |                                                                                                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fuzzy  | Logic                 | Controller Design Based on Genetic and Evolution                                                                  | <b>5</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Algori | thms                  | Genetic and Evolutionary                                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 7 . 1                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| / !    |                       | 77.04                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.1    | Introduc              | ction                                                                                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.2    | What is 4.2.1         | Soft Computing?  Importance of Soft Computing                                                                     | 79<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 3.10<br>3.11<br>Fuzzy | 3.8 Adva 3.8.1 3.8.2 3.8.3 3.8.4  3.8.6 3.8.7 3.8.8  3.9 Applica 3.10 Other Constant 3.10.1 3.10.2  3.11 Conclust | 3.7.3 Other Analyses of Genetic Algorithms  1. Walsh Function Analysis  2. Markov Chain Analysis  3. Criticisms of the Building Block Hypothesis  3. Advanced Operators and Techniques in Genetic Search  3.8.1 Selection Schemes  3.8.2 Mutation  3.8.3 Crossover Mechanisms (Recombination)  3.8.4 Advanced Operators  1. Inversion  2. Reinsertion  3. Migration  3.8.5 Scaling Mechanisms  1. Linear Scaling  2. Sigma (σ) Truncation  3. Power Law Scaling  3.8.6 Parallel and Distributed Genetic Algorithms  3.8.7 Micro Genetic Algorithms (μGA)  3.8.8 Steady State Genetic Algorithms  3.9 Applications  3.10 Other Genetic Algorithm Related Topics  3.10.1 Classifier Systems  3.10.2 Artificial Life  3.11 Conclusion  Fuzzy Logic Controller Design Based on Genetic and Evolutionary |

|   |       | 4.2.2             | A Glimpse into the Future                                    | 8   |
|---|-------|-------------------|--------------------------------------------------------------|-----|
|   | 4.3   | Hybrid            | Systems                                                      | 82  |
|   |       | 4.3.1             | Neuro-Fuzzy Systems                                          | 82  |
|   |       | 4.3.2             | Evolved Neural Networks                                      | 83  |
|   |       | 4.3.3             | Genetic Algorithms for the Design of Fuzzy Systems           | 83  |
|   |       |                   | 1. Suitability of Genetic Algorithms for Fuzzy System Design | 84  |
|   | 4.4   | Case S            | tudy: Induction Motor Speed Control Problem                  | 85  |
|   |       | 4.4.1             | Brief Description of the System                              | 85  |
|   |       | 4.4.2             | Genetic-Based Conventional PI Controller                     | 89  |
|   |       | 4.4.3             | Heuristic Design of PI-Like Fuzzy Logic Controller           | 97  |
|   |       | 4.4.4             | GA-Based Design of PI-Like FLC (Normalized Space)            | 101 |
|   |       | 4.4.5             | Design of GA-Based PI-Like FLC Using Actual Space of         | 108 |
|   |       |                   | Variables                                                    |     |
|   | 4.5   | Design            | of PI-like FLC (Actual Space) with Control Signal Limitation | 117 |
|   | 4.6   | Summa             | ry and Conclusion                                            | 126 |
| 5 | Conc  | lusion an         | d Future Work                                                | 128 |
|   | 5.1   | Thesis S          | Summary                                                      | 128 |
|   | 5.2   |                   | ements and Conclusions                                       | 129 |
|   | 5.3   | Future '          | Work and Directions                                          | 131 |
|   | Refer | en <sub>ces</sub> |                                                              | 133 |
|   | Appe  | ndix 1: S         | imulink Models and Objective Functions                       | 138 |
|   | Arab  | ic Summ:          | arv                                                          |     |

#### List of Figures

| Fig. 2.1 Fuzzy sets                                                                | 13   |
|------------------------------------------------------------------------------------|------|
| Fig. 2.2 Core, support, and boundaries of a fuzzy set.                             | 14   |
| Fig. 2.3 Shoe sizes fuzzy sets                                                     | 20   |
| Fig. 2.4 Output fuzzy set (by scaling)                                             | 20   |
| Fig. 2.5 Center-of-area defuzzification                                            | 23   |
| Fig. 2.6 Mean-of-maxima defuzzification                                            | ` 23 |
| Fig. 2.7 Height (weighted average) defuzzification                                 | 24   |
| Fig 2.8 General representation of fuzzy inference mechanism using                  | 28   |
| Mamdani min implication and Larsen product implication                             |      |
| Fig. 2.9 Summary of fuzzy rule-base operation                                      | 29   |
| Fig. 2.10 Different structures of fuzzy logic controller                           | 31   |
| Fig. 2.11 PI-like fuzzy logic controller structure                                 | 34   |
| Fig. 2.12 PD-like fuzzy logic controller structure                                 | 35   |
| Fig. 2.13 PID-like fuzzy logic controller structure                                | 35   |
| Fig. 2.14 Membership functions of the variables error e, error change $\Delta e$ , | 39   |
| and control signal change $\Delta u$                                               |      |
| Fig. 2.15 Control surface of the fuzzy logic controller (Actual space)             | 40   |
| Fig. 3.1 Classes of sourch / outimization to during                                |      |
| Fig. 3.1 Classes of search / optimization techniques                               | 46   |
| Fig. 3.2 Structure of a single population genetic/evolutionary algorithm           | 50   |
| Fig. 3.3 Structure of an extended multi-population genetic/evolutionary  Algorithm | 50   |
| Fig. 3.4 Roulette-wheel of data in table 3.1                                       |      |
| Fig. 3.5 Single point crossover                                                    | 53   |
| Fig. 3.6 Binary mutation process                                                   | 54   |
| _                                                                                  | 55   |
| Fig. 3.7 Multi-parameter, mapped, fixed-point coding                               | 56   |
| Fig. 3.8 Multi-point crossover                                                     | 69   |