

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

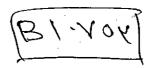
نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



Tanta University
Faculty of Engineering
Electrical Power & Machines Dep.

Optimal Design of Grounding Systems of Electrical Networks

Thesis Submitted for M. Sc. Degree

By

Eng. Amlak Abaza Kuth El Hariri

B. Sc. In Electrical Engineering Tanta University 1997 Research Assistance in the Electrical Power & Machines Dep. Faculty of Engineering Tanta University

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master (M. Sc)

Under the Supervision of

Prof. Dr. Gamal El Dean El Saead Mohamed Aly

Head of Electrical Power & Machines Dep. Faculty of Engineering Tanta University and Vice Dean for High Graduate and Research

Ass. Prof. Dr. Ahmed Ibrahim Shobeir

Assistance professor at Electrical Power & Machines Dep. Tanta University

Dr. Mostafa Amin Hassanin

Lecturer at Electrical Power & Machines Dep. Tanta University

Tanta University
Faculty of Engineering
Electrical Power & Machines Dep.

Optimal Design of Grounding Systems of Electrical Networks

Thesis Submitted for M. Sc. Degree

By

Eng. Amlak Abaza Kutb El Hariri

(B. Sc. In Electrical Engineering 1997)

Under the Supervision of

Supervision	Position	Signature
Prof. Dr. Gamal El Dean El Saead Mohamed Aly	Head of Electrical Power & Machines Dep. Faculty of Engineering Tanta University and Vice Dean for High Graduate and Research	G.E.M.A
Ass. Prof. Dr. Ahmed Ibrahim Shobeir	Assistance professor at Electrical Power & Machines Dep. Tanta University	A. Shobas
Dr. Mostafa Amin Hassanin	Lecturer at Electrical Power & Machines Dep. Tanta University	4

Approval Sheet

Student Name

:Amlak Abaza Kulb El Harir

Thesis Title

: Optimal Design of Grounding Systems of

Electrical Networks

The Committee's Members

No.	Name	Position
1	Prof. Dr. Mohmed Mohamed Awad	Chairman of Holding Company of Egyptian Electricity
2	Prof. Dr. Abd El Mohsin Mohamed Kenawy	Professor at Electrical Engineering Dep Faculty of Engineering Monofia University and Vice Dean for High Graduate and Research
3	Prof. Dr. Gamal El Dean El Saead Mohamed Aly	Head of Electrical Power & Machines Dep. Faculty of Engineering Tanta University and Vice Dean for High Graduate and Research

Committee's Members:

No.	Name	Signature /
1	Prof. Dr. Mohamed Mohamed Awad	M.R
2	Prof. Dr. Abd El Mohsin Mohamed Kenawy	A.M. Kinawy
3	Prof. Dr. Gamal El Dean El Saead Mohamed Aly	C.EM.R

ACKNOWLEDGMENTS

It is through god's grace that the present work could be fulfilled.

I would like to thank my supervision committee:

Prof. Dr. Gamal El Dean El Saead Mohamed Aly, Ass.

Prof. Dr. Ahmed Ibrahim Shobeir and Dr. Mostafa Amin

Hasannin, Electrical Power & Machines Dep. Faculty of

Engineering Tanta University, for their inestimable guidelines,

supports and kind help.

Special thanks to my family: my father, my mother, my sisters and brothers for their great encouragement and support.

ABSTRACT

With the growth of number and size of electrical networks, the need for an accurate and more versatile grounding system becomes more important. The importance of the accurate design is coming from both safety and financial considerations.

It is important that the substation ground has an effective grounding resistance, adequate current carrying capacity, and safety future for personnel and equipment.

To design an accurate grounding system, it is essential to evaluate accurately the parameters of grounding system. The parameters of grounding system include modeling of soil resistivity, determining the grounding resistance, calculating the step and touch potentials, and determining the size of grounding electrode.

Different methods with various techniques are presented over many years, to calculate accurately the grounding system parameters. The methods used may be analytical, computer-aided, or graphical method.

This thesis presents a comprehensive literature survey of the methods used to calculate the parameters of grounding system over about 25 years ago. The different methods are introduced exploring different assumptions, approximations, and the applied conditions of each method. Also the advantages and the disadvantages of each method, compared to the other methods, are discussed. Our opinion of each method is remarked.

The measurement of soil resistivity is important in the design of a grounding system. The measurements cannot be used directly in the design.

Modeling of these measurements simplifies the calculation of grounding resistance and potential gradient of a grounding electrode. Moreover modeling of soil resistivity enhance better selection of the suitable grounding electrode.

The grounding resistance of a certain electric system depends on its size and the safety condition required. An accurate formula to calculate the grounding resistance must be used. The accurate estimation of a grounding resistance results in accurate estimation of the values of the potential distribution over earth surface.

The potential gradient control depends on the accurate calculation of values of the tolerable and the actual values of the potentials due to an electrode. The potential gradient of a grounding electrode is a deterministic factor of the safety for personnel and equipments. The actual step and touch potentials of an electrode must be compared with the tolerable values.

At the end of this thesis, guidelines for the grounding system designer are presented. The guidelines help the designer to focus quickly on the most suitable design. The design procedures are presented including the method used to calculate the size of grounding electrode and the maximum grounding current.

CONTENTS

Acknowledgment	I
Abstract	ii
Chapter1: Introduction	1
1.1 Introduction	1
1.2 Measurement and Modeling of Soil Resistivity	4
1.3 Grounding Resistance Calculation	8
1.4 Potential Gradient Control	9
1.5 Scope of Thesis	11
Chapter 2: Soil Resistivity	13
2.1 Introduction	13
2.2 Resistivity Measurement	13
2.2.1 Wenner's Four- Probe Method	14
2.2.2 Schlumberger's Method	15
2.3 Side Effects of Soil Resistivity Measurements	16
2.3.1 Inductive Coupling between Measurement Leads (Potential and	
Current Leads)	16
2.3.2 Influence of Buried Metallic Structure on Soil Resistivity Measurements	18
2.3.2.1 The Error produced Due to Existence of Grounding Grid	19
2.3.2.2 Existence of Transmission Line Right-of -Way	22
2.4 Modeling of Soil Resistivity	23
2.4.1 Modeling of Uniform Soil	23
2.4.2 Modeling of Layered Soil	23

2.4.2.1 Modeling of Wenner's Measurements	24
2.4.2.2 Equivalent Resistivity of Measuring Results of Modified	
Wenner's Method	28
2.4.2.3 Modeling of Measurements Other Than Wenner Method	30
Chapter 3: Calculation of Grounding Resistance	33
3.1 Introduction	33
3.2 Resistance of Grounding Electrode Buried in Uniform Soil	33
3.2.1 Grounding Resistance of Single Rod Electrode	33
3.2.2 Grounding Resistance of Multiple-driven Rods	35
3.2.3 Resistance of Grounding Grid	40
3.2.3.1 Graphical Method	40
3.2.3.2 Computer-Aided Method	45
3.2.3.3 Analytical Methods	53
3.2.4 Grounding Resistance of Grid-Rods Combination	60
3.2.4.1 Computer-Aided Methods	60
3.2.4.2 Analytical Method	60
3.2.5 Grounding Resistance of Auxiliary Electrode	62
3.3 Resistance of Grounding Electrode Buried in Two-Layer Soil	66
3.3.1 Resistance of Single Rod Electrode	66
3.3.2 Grounding Resistance of Multiple-Driven Rods	73
3.3.3 Grounding Resistance of Grid Electrode	75
3.3.3.1 Computer-Aided Methods	75
3.3.3.2 Analytical Methods to Calculate Grounding Grid Resistance	
3 3.4 Grid-Rods Combination Resistance in a Two-Layer Soil	80

CON	I EN I
	0.0
Structure	82
3.3.4.1 Computer-Aided Method	82
3.3.4.2 Analytical Method	83
3.4 Measurement of Grounding Resistance of Existence Electrode	83
3.4.1 Types of Test	84
Chapter 4: Potential Gradient Control	88
4.1 Introduction	88
4.2 Tolerable Potentials	89
4.3 Step and touch Voltages of Grounding Electrode	97
4.3.1 Computer-Aided Methods	97
4.3.2 Analytical Methods	98
4.3.2.1 Grid Electrode	98
4.3.2.2 Grid- Rods Combination Electrode	104
4.3.3 Graphical Method	109
4.4 Discussion	115
Chapter 5: Design of Grounding System	117
5.1 Introduction	117
5.2 Design Procedures	118
Chapter 6 : Conclusion	145
References	150

List of Figures

Figure 2.1	Wenner Resistivity measurement	15
Figure 2.2	Schlumberger resistivity measurement	15
Figure 2.3	Soil resistivity measurement set-up based on Wenner's	
	method	18
Figure 2.4	Profile 1	19
Figure 2.5	Profile 2	20
Figure 2.6	Profile 3	21
Figure 2.7	Proposed profile	22
Figure 2.8	Arrangement 1	22
Figure 2.9	Arrangement 2	23
Figure 2.10	Master curves and the field curve	26
Figure 2.11	Modified Wenner's method	28
Figure 2.12	Grid representation	30
Figure 3.1	Hemispherical electrode	34
Figure 3.2	Two-driven rods	36
Figure 3.3	Coupling coefficient between rods	39
Figure 3.4	Graphical data to evaluate the grounding resistance in case	43-
- 3.12	of uniform soil	45
Figure 3.13	Point Source electrode	46
Figure 3.14	Representation of the grounding electrode	49
Figure 3.15	Representation of a micro-segment	50
Figure 3.16	Conductor located in a two-layer soil	53
Figure 3.17	Image of current source	53
Figure 3.18	Coefficient K ₁	56
Figure 3.19	Coefficient K ₂	56