

NUMERICAL STUDY OF CONVECTION HEAT TRANSFER TO GAS CYLINDERS AND ECONOMICAL ANALYSIS

 $\mathbf{B}\mathbf{y}$

Eng. Mohamed Eid Mohamed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

NUMERICAL STUDY OF CONVECTION HEAT TRANSFER TO GAS CYLINDERS AND ECONOMICAL ANALYSIS

By

Eng. Mohamed Eid Mohamed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr.Sayed KasebProfessor of Mechanical Power
Engineering

Dr.Gamal El-HariryLecturer of Mechanical Power
Engineering

Mechanical Power Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

NUMERICAL STUDY OF CONVECTION HEAT TRANSFER TO GAS CYLINDERS AND ECONOMICAL ANALYSIS

By

Eng. Mohamed Eid Mohamed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Sayed KasebProfessor of Mechanical Power Engineering

Chief Advisors

Prof. Dr. Abdel-Wahed El-DibProfessor of Mechanical Power Engineering

Internal Examiner

Prof. Dr.Eed A.Abdel-HadiProfessor of Mechanical Power Engineering- Faculty of Engineering, Benha University

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful. Praise and Gratitude be to Allah for giving me strength and guidance, so that this dissertation can be finished accordingly.

My sincere appreciation and infinite thanks to **Dr. Gamal El-Hariry** who gave me scientific support and guidance to make a progress in this research. Besides having severe admiration of his gigantic experience, unlimited co-operation and efforts of helping me to complete this research in the best way.

Also, I would like to express my deep gratitude and thanks to **Prof .Dr. Sayed Kaseb** for his support and distinctive supervision throughout this work.

Special thanks to **Eng. Fawzy Abdel-Aziz** for his patience, guidance, valuable advices and kind support during work in ANSYS FLUENT program.

Finally, I cannot express; in words; my thanks and gratitude to my family for continuous help and support that provided me to finish this work in a suitable form.

CONTENTS

SUBJECT	PAGE
CONTENTS	ii
LIST OF TABLES	vii
LIST OF FIGURES	viii
SYMBOLS AND ABBREVIATIONS	xii
ABSTRACT	xxi
CHAPTER 1 INTRODUCTION	1
1.1 General	1
1.2 Thermal Convection	1
1.2.1 forced convection	2
1.2.1.1 Mechanism of Forced Convection	3
1.2.2 natural convection	4
1.2.2.1 Mechanism of natural Convection	4
1.3 Flow across Cylinders	5
1.4 Heat Transfer Coefficient	5
1.5 Combined forced and natural convection	7
1.5.1 Cases	7
1.5.2Calculation of total heat transfer	8
1.6 Purposes of Air cooling	8
1.7 Present Work	8
CHAPTER 2 LITERATURE REVIEW	9
2.1 introduction	9
2.2 Some Types of LP Gas Cylinders	9
2.3 LPG Cylinder Productions	11
2.3.1 Turn Key LPG Cylinder Production Plant	11

2.3.2 Process Steps	12
2.3.3 Blanking and Body Forming Line	13
2.3.4 Foot Ring (BASE RING) and Valve Guard Ring (COLLAR) Production Line	13
2.3.5 Valve Boss (Valve Neck or Neck Ring) Production Line	14
2.3.6 Welding, Heat Treatment & Hydrostatic Testing Line	15
2.3.7 Surface Coating & Finishing Line	16
2.3.8 LPG Cylinder Valve Production	16
2.4 Use of gas cylinders and associated equipment	17
2.4.1 Safe connection of equipment	17
2.5 Axial Flow Fan	17
2.5.1 Definition of Axial Fans	17
2.5.2 Effect of Tip Clearance	18
2.5.3 Effect of Inlet Conditions	18
2.6 Centrifugal Fans	19
2.6.1 Wheel Types	21
2.7 Inverter	22
2.7.1 Control	23
2.8 Overhead Conveyor.	24
2.8.1 Features:	25
2.9 Cooling of a copper sphere by forced convection method	25
2.9 Closure	27
CHAPTER 3 GOVERNING EQUATIONS	29
3.1 Fluid Element for Conservation Laws	29

3.2 Continuity Equation	30
3.3 Momentum Conservation Equations	31
3.4 Energy Conservation Equation	33
3.5 Species Transport Equations	34
3.6 Turbulence Modelling	35
3.6.1 Reynolds Averaging	36
3.7 Choosing an Advanced Turbulence Model	36
3.7.1The Standard k - ϵ Models	36
$3.7.2$ The RNG k - ϵ Models	37
3.7.3 Modeling Turbulent Production In the k - ϵ Models	38
3.7.4 Effects of Buoyancy on Turbulent In the k - ϵ Model	39
3.7.5 Convection Heat Transfer modeling In the k - ϵ Models	39
3.7.6 Buoyancy-Driven Flows and Natural Convection	39
3.8 Filtered Navier-Stokes Equations for Large-Eddy Simulation	41
3.8.1 Subgrid-Scale Models for Large-Eddy Simulation	43
3.9 Near-Wall Treatments for Wall-Bounded Turbulent Flows	44
3.9.1Wall Functions vs. Near-Wall Model	45
3.10 Wall Functions	46
3.10.1 Standard Wall Functions	46
3.10.2 Non-Equilibrium Wall Functions	49
3.11 General Differential Equation for CFD Program	51
CHAPTER 4 CASE STUDIE AND MODELING	52
4.1 Factory Data	52
4.2 Computational Fluid Dynamics (CFD)	54
4.2.1 What is CFD	54
4.2.2 Application of CFD	55
4.2.3 CFD Modeling Overview	55
4.2.4 Importance of CDF	56

4.3 Geometry Modeling	56
4.3.1 Forced Tunnel Space Modeling	56
4.3.2 Natural Space Modeling	57
4.3.3LPG Cylinder Modeling	58
4.4 Mesh Generation for CFD simulation	60
4.4.1Forced Convection Case Meshing	60
4.4.2 Natural Convection Casa Meshing	61
4.5 Boundary Conditions	61
4.5.2 Indoor Space Environment Boundaries	61
4.6 Discretization	62
4.6.1 Segregated Solution	63
4.6.2 Implicit Solution	65
4.6.3 Pressure-Velocity Coupling	65
4.6.4 Under-Relaxation Factors	65
CHAPTER 5 RESULTS AND DISCUSSION	67
5.1 Introduction	67
5.2 Performance of Two Cooling Models	67
5.3 Plane that Show Results	67
5.3.1 Forced Convection Method	67
5.3.1.1 Temperature Distribution over Gas Cylinders in Forced	69
5.3.1.2 Velocity Distribution over Gas Cylinders	75
5.3.2 Natural Convection Method	85
5.3.2.1 Temperature Distribution over Gas Cylinders in Natural	86
5.3.2.2 Velocity Distribution over Gas Cylinders	95
5.4 Economic Comparison	100
5.5 Thermal Comparison Between The Two Methods	106

5.5.1 Thermal Pattern	108
5.6 Summary	110
CHAPTER 6 CONCLUSIONS AND SUGGESTED FUTURE WORK	112
6.1 Introduction	112
6.2 Conclusions of the Present Work	112
6.3 Recommendations for Future Work	113
REFERENCES	114

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
Table 1.1	Convective Heat Transfer Coefficients	2
Table 2.1	Specification of model LPG cylinder 50KG	10
Table 2.2	Specification of model LPG cylinder 3KG	10
Table 2.3	Specification of model LPG cylinder 12.5KG	10
Table 2.4	Specification of model LPG cylinder 15KG	11
Table 3.1	RANS Turbulence Model Descriptions	40
Table 3.2	RANS Turbulence Model Behavior and Usage	42
Table 4.1	Comparison of Simulation and Experiment	56
Table 4.2	Initial and boundary conditions	62
Table 4.3	Under-Relaxation Factors for different quantities corrections.	66
Table 5.1	Economical comparison between forced convection and natural convection	103
Table 5.2	Total cost of forced and natural convection	105
Table 5.3	different temperatures with time and length	106

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
Figure 1.1	Boundary Layer	2
Figure 1.2	Forced convection	3
Figure 1.3	Natural convection heat transfers from a hot body.	4
Figure 1.4	flow across cylinder	5
Figure 1.5	relation between θ and Nu_{θ}	6
Figure 2.1	Side from plant	12
Figure 2.2	Steps of Manufacturing LPG Cylinder	12
Figure 2.3	Machine press and die of LPG Cylinder	13
Figure 2.4	Foot ring and valve guard	14
Figure 2.5	Machine to foot ring and valve guard	14
Figure 2.6	Valve boss	14
Figure 2.7	Machine valve boss	15
Figure 2.8	Welding hydrostatic testing of LPG cylinders	15
Figure 2.9	panting and finishing line	16
Figure 2.10	Manufacture valve body and safety release pressure levels	16
Figure 2.11	Tip Vortex (Leakage)	18
Figure 2.12	Airflow throw no bell shaped inlet	18
Figure 2.13	Air flow throw bell shaped inlet	19
Figure 2.14a	Axial Flow	20
Figure 2.14b	Centrifugal Flow	20
Figure 2.15	Terminology for Centrifugal Fan Components	20
Figure 2.16	Wheel Vector Diagrams	21
Figure 2.17	Tip Speed/Static Pressure Relationship	22
Figure 2.18	pattern and motor output torque	23
Figure 2.19	Inverter for control speed	23
Figure 2.20	Overhead conveyors	24
Figure 2.21:	temperature contours of sphere (35° C) at t = 70 s	26

Figure 2.22	Selected axial fan	27
Figure 2.23	Selected performance curve for axial fan	28
Figure 3.1	Fluid element for conservation laws	29
Figure 3.2	Control volumes for Eulerian approach	30
Figure 3.3	Typical point velocity measurement in turbulent flow	35
Figure 3.4	Subdivisions of the Near-Wall Region	45
Figure 3.5	Near-Wall Treatments in ANSYS FLUENT	45
Figure 4.1	shows the technical drawing of the painting plant of LPG cylinders	52
Figure 4.2	Section at A-A of the curing powder oven and forced cooling zone of	53
	LPG cylinders.	
Figure 4.3	Photo for natural convection overhead conveyor of gas cylinder inside factory.	53
Figure 4.4	photos for different size of gas cylinder	54
Figure 4.5	Guide steps for solving any CFD problem	55
Figure 4.6.	The tunnel geometry modelled by using FLUENT	57
Figure 4.7	The natural convection geometry modelled by using FLUENT	58
Figure 4.8	LPG cylinder geometry modelled by using SOLIDWORK	59
Figure 4.9	LPG cylinder on conveyer	59
Figure 4.10	Meshing processed for forced convection cooling tunnel with FLUENT®	60
Figure 4.11	Meshing processed for natural convection area with FLUENT®	61
Figure 4.12	Segregated solution flow chart	64
Figure 5.1	Velocity magnitude contours	68
Figure 5.2	Static Temperature contours (200 °C) at t =0 s	69
Figure 5.3	Static Temperature contours (200 °C) at t =0 s	69
Figure 5.4	Static Temperature contours (194 °C) at t =50 s	70
Figure 5.5	Static Temperature contours (177 °C) at t =50 s	70
Figure 5.6	Static Temperature contours (172 °C) at t =155 s	71
Figure 5.7	Static Temperature contours (118 °C) at t =155 s	71
Figure 5.8	Static Temperature contours (110 $^{\circ}$ C) at t = 330 s	72
Figure 5.9	Static Temperature contours (104 $^{\circ}$ C) at t = 330 s	72

Figure 5.10	Static Temperature contours (103 $^{\circ}$ C) at t = 455 s	73
Figure 5.11	Static Temperature contours (56.6 $^{\circ}$ C) at t = 455 s	73
Figure 5.12	Static Temperature contours (94.4 $^{\circ}$ C) at t = 555 s	74
Figure 5.13	Static Temperature contours (48 °C) at t =555 s	74
Figure 5.14	Static Temperature contours (56 °C) at t =655 s	75
Figure 5.15	Static Temperature contours at exit tunnel (50 $^{\circ}$ C) at t =135 s	75
Figure 5.16	Inlet Velocity magnitude contours (13m/s), horizontal plane (XZ)	76
Figure 5.17	Velocity magnitude contours (18.5m/s), horizontal plane (XZ)	76
Figure 5.18	Velocity magnitude contours between gas cylinders (6.5m/s), horizontal	77
Figure 5.19	plane Velocity magnitude contours between gas cylinders (9.77m/s), vertical plane	77
Figure 5.20	Static Temperature contours (41.3 °C) at t = 705 s	78
Figure 5.21	Static Temperature contours (37 °C) at t =705 s	79
Figure 5.22	Static Temperature contours in surrounding (29 °C) at t =600 s	79
Figure 5.23	Static Temperature contours (57 °C) at t =430 s	80
Figure 5.24	Static Temperature contours in surrounding (34 $^{\circ}$ C) at t =585 s	81
Figure 5.25	Static Temperature contours (51 °C) at t =935 s	81
Figure 5.26	Static Temperature contours (64 °C) at t =935 s	82
Figure 5.27	Velocity magnitude contours between gas cylinders (0.055m/s), vertical plane	82
Figure 5.28	Static Temperature contours (65 °C) at t =1050 s	83
Figure 5.29	Static Temperature contours (82 °C) at t =1050 s	84
Figure 5.30	Velocity magnitude contours between gas cylinders (0.055m/s), vertical plane	84
Figure 5.31	Velocity magnitude contours (0.055m/s)	85
Figure 5.32	Static Temperature contours (200 $^{\circ}$ C) at t =0 s	86
Figure 5.33	Static Temperature contours (200 $^{\circ}$ C) at t =0 s	86
Figure 5.34	Static Temperature contours (198 °C) at t =490 s	87
Figure 5.35	Static Temperature contours (190 °C) at t =490 s	87
Figure 5.36	Static Temperature contours (195 $^{\circ}$ C) at t =1725 s	88
Figure 5.37	Static Temperature contours (187 °C) at t =1725s	88
Figure 5.38	Static Temperature contours (194 °C) at t =2390s	89

Figure 5.39	Static Temperature contours (177 °C) at t =2390s	89
Figure 5.40	Static Temperature contours (191 °C) at t =3310s	90
Figure 5.41	Static Temperature contours (175 $^{\circ}$ C) at t =3310s	90
Figure 5.42	Static Temperature contours (182 °C) at t =4000s	91
Figure 5.43	Static Temperature contours (165 °C) at t =4000s	91
Figure 5.44	Static Temperature contours (178 °C) at t =5000s	92
Figure 5.45	Static Temperature contours (162 °C) at t =5000s	92
Figure 5.46	Static Temperature contours (176 °C) at t =5870s	93
Figure 5.47	Static Temperature contours (160 °C) at t =5870s	93
Figure 5.48	Static Temperature contours (165 °C) at t = 7050s	94
Figure 5.49	Static Temperature contours (175 °C) at t = 7050s	94
Figure 5.50	Static Temperature contours (163.8 °C) at t =7500s	95
Figure 5.51	Static Temperature contours (156 °C) at t = 7500s	95
Figure 5.52	Velocity magnitude contours (0.05m/s), vertical plane (YZ)	96
Figure 5.53	Velocity magnitude contours (0.012m/s), vertical plane (XZ)	96
Figure 5.54	Velocity magnitude contours (0.05m/s), horizontal plane (XZ)	97
Figure 5.55	Velocity magnitude contours (0.012m/s), horizontal plane (XZ)	97
Figure 5.56	Velocity magnitude contours (0.049m/s), horizontal plane (XZ)	98
Figure 5.57	Velocity magnitude contours (0.04m/s), horizontal plane (XZ)	98
Figure 5.58	Velocity magnitude contours (0.055m/s), horizontal plane (XZ)	99
Figure 5.59	Velocity magnitude contours (0.055m/s), vertical plane (YZ)	99
Figure 5.60	Forced convection tunnel of case (a)	100
Figure 5.61	Forced convection tunnel of case (b)	101
Figure 5.62	Forced convection tunnel of case (c)	102
Figure 5.63	Static Temperature contours of forced convection (177 °C) at t =50s	107
Figure 5.64	Static Temperature contours of natural convection (177 °C) at t=2390s	107
Figure 5.65	Forced convection coordinate at $Y=(1.55 \text{ to } -1.55) \text{ m}$.	108
Figure 5.66	Forced convection coordinate at $X=(0.575 \text{ to } -0.575) \text{ m}$.	109
Figure <i>5</i> .67	Natural convection coordinate at Y= (2.25 to -2.25) m	109
Figure 5.68	Natural convection coordinate at $X=(2 \text{ to } -10) \text{ m}$	110

SYMBOLS AND ABBREVIATIONS

NOMENECLATURE

Symbol	Quantity
Br	Brinkman number, Br = $\frac{\mu U_e^2}{k\Delta T}$
C	Constant
C_p	Specific heat at constant pressure, J/kg.K
D	Distance, m
D_{im}	Diffusion coefficient for species i in mixture m , m^2/s
E	Total energy of a fluid particle, J Dimensionless term describing the turbulent dissipation rate, ε
$\overrightarrow{\pmb{F}}$	External body forces, N
G	Gravitational acceleration, m/s ²
G_b	Generation of turbulent kinetic energy, k , due to buoyancy
G_k	Turbulence kinetic energy production
h	Enthalpy, kJ/kg
h_j^0	enthalpy of formation of species j , J / mol
H	Height, m
I	Unit tensor Fluctuation intensity, W/m^2
$ec{m{J}}_{j}$	Diffusion flux of species j ,kg/ m^2 .s
K	Turbulent Kinetic energy, m ² /s ²
k	Dimensionless group describing the turbulent kinetic energy.
L_s	Mixing length, m
Le	Lewis number, $Le_i = \frac{k}{\rho c_p D_{i,m}}$
M	Mass, kg
P	Pressure, Pa
Pr	Prandtl Number, $Pr = C_p \mu / k$
Ra	Rayleigh number, $Ra = Gr \times Pr$
Re	Reynolds Number, Re = ρ U 1 / μ
RH	Relative humidity, %

Net rate of production of species i

 R_i