

BIODIESEL PRODUCTION FROM WASTE FRYING OIL AND WSTEWATER SEWAGE SLUDGE

By

Jemmy Carter Fouad Atta

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering - Public Works

BIODIESEL PRODUCTION FROM WASTE FRYING OIL AND WSTEWATER SEWAGE SLUDGE

By
Jemmy Carter Fouad Atta

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in

Civil Engineering - Public Works

Under the Supervision of

Prof. Dr. Hisham S. Abdel Halim

Prof. Dr. Mostafa El-Hosseini

Professor of Sanitary and
Environmental Engineering
Civil Eng. - Public Works Department
Faculty of Eng., Cairo University,
Egypt

Professor of Soil Microbiology, Soils, Water and Environment Research Inst., Agric. Res. Center, Egypt

Dr. Mona M. Galal El.Din

Lecturer of Sanitary and Environmental
Engineering
Civil Eng. - Public Works Department
Faculty of Eng., Cairo University,
Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

BIODIESEL PRODUCTION FROM WASTE FRYING OIL AND WSTEWATER SEWAGE SLUDGE

By

Jemmy Carter Fouad Atta

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering - Public Works

Approved by the Examining Committee

Prof. Dr. Hisham S. Abdel Halim

Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Ehab Mohamed Rashed

Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Maha Moustafa El Shafei

Professor of Sanitary and Environmental Engineering, Housing and Building Research Center Thesis Main Advisor

Internal Examiner

Elab MP

External Examiner

Arra Said

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer:

Jemmy Carter Fouad Carter

Date of Birth: Nationality:

26/06/1978

E-mail:

Egyptian

E-man:

jemmycarter.31@gmail.com

Phone:

01200980006

Address: Registration Date:

339 Fasiel st., Fasiel ,Giza

Awarding Date:

1/ 10/2011 2016

Department:

Civil Engineering - Public Works

Degree:

Doctor of Philosophy

Supervisors:

1. Prof. Dr.. Hisham Sayed Abdel-Halim
Professor of Sanitary and Environmental Engineering, Cairo University

2. Prof. Dr. Mostafa El-Hosseini

Professor of Soil Microbiology, Soils, Water and Environment Research, Inst., Agric. Res.

3. Dr. Mona Mohamed Galal El.Din M. Gall Lecturer of Sanitary and Environmental Engineering, Cairo University

Examiners:

1. Prof. Dr. Hisham Sayed Abdel-Halim (Thesis main advisor)

Professor of Sanitary and Environmental Engineering, Cairo University

2. Prof. Dr. Ehab Mohamed Rashed – (Internal Examiner)
Professor of Sanitary and Environmental Engineering, Cairo University

3. Prof. Dr. Maha Moustafa El Shafei - (External Examiner)
Professor of Sanitary and Environmental Engineering, Housing and Building Research Center

TITLE OF THESIS:

BIODIESEL PRODUCTION FROM WASTE FRYING OIL AND WSTEWATER SEWAGE SLUDGE

Key Words: Fossil, Biodiesel, Transesterification, sunflower, Jatropha.

Summary:

The global continuous growth of energy demand poses urgent problem due to the fossil fuels depletion. Energy demand has led the world to discover new secure energy sources that are renewable, environment-friendly, affordable and above all sustainable. Biodiesel is a well known alternative fuel due to its different advantage resides. Transesterification of edible oil such as sunflower oil, non-edible oil as Jatropha oil, home waste cooking oil and chipcy cooking oil were carried out. The maximum bio-diesel obtained yields (g/g) of 97.23% ,96.54%, 95.37% and 96.38 % were achieved from sunflower oil, Jatropha oil, home waste cooking oil and chipcy cooking .

Acknowledgments

The author is deeply indebted to Prof. Dr. Hisham S. Abdel Halim Professor of Sanitary and Environmental Engineering Civil Eng. - Public Works Department Faculty of Eng., Cairo University, Egypt. Prof. Dr. Mostafa El-Hosseini Professor of Soil Microbiology, Soils, Water and Environment Research Inst., Agric. Res. Center and Dr. Mona M. Galal El.Din Lecturer of Sanitary and Environmental Engineering, Civil Eng. - Public Works Department Faculty of Eng., Cairo University, Egypt for suggested the problem, supervision, kind help and encouragement during the study and the preparation of the manuscript.

The writer also, deeply thanks Mr. Samir Abd El karem his kind help, support and supplying facilities during the study.

The author would like to express his deep appreciation and sincere gratitude to Dr. Ramadan Mohamed Abd-Rabuo and the staff members especially Mr. Ahmed Taha Sheha and Mrs. Susan Fathy for continuous efforts encouragement and sincere advice during my study.

Deep thanks and gratitudes are due to Eng. Ahmed Zaky G.M. of western 6th of October treatment plant for his help and support a lot of time to get the final form of this work.

Sincere thanks are also, due to the staff members and colleagues of especially Dr. Mohamed Osama Mohamed for their co-operation and continuous help throughout the work.

Deep appreciations are due to My Family for her continuous encouragement and effective help.

Also, very grateful to the sanitary engineering staff, Faculty of Engineering, Cairo University for their encouragement, support and cooperation during thesis preparation.

Table of Content	Page
ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	ii
LIST OF TABLES	vii
LIST OF FIGURES	ix
ABSTRACT	xi
CHAPTER 1 INTRODUCTION	
1.1Introduction	1
1.2 Biodiesel benefits	1
1.3 Thesis objectives	3
1.4 Plan of work	3
CHAPTER 2 REVIEW OF LITERATURE	
2.1 Introduction	4
2.2 Biodiesel Production in Egypt	5
2.3 Biodiesel Production Methods	6
2.3.1 Direct use and blending	6 6
2.3.2 Microemulsions.	7
2.3.3 Thermal cracking (pyrolysis))	7
2.3.4 Transesterification (Alcoholysis)	7
2.3.5 IN-SITU TRANSESTERIFICATION	7 8
2.4 Various factors affect the process of transesterification, and the more important ones are described	10
2.4.2 Molar ratio of alcohol to oil and type of alcohol	19
2.4.3 Effect of temperature and reaction time	20
2.4.4 Mixing intensity	21
2.5 The challenge for the current bio-diesel production	24
2.6 Lower-cost Feedstocks for Bio-diesel Production and	
using it as Fuel	
2.6.1 Bio-diesel Production from Jatropha Oil	25
2.6.2 Bio-diesel Production from Waste Cooking Oil	
2.6.3 Bio-diesel Production from Sewage sludge	27
	29

2.7 Biodiesel Performance	35
CHAPTER 3 MATERIALS AND METHODS	••••
3.1 pre-treatment of used frying oil	
3.2 Methodology	. 38
3.2.1 Acid catalyzed esterification	
3.2.2 Alkali catalyzed transesterification	20
3.2.3 Washing	
3.2.4 Drying	
3.3 The Biodiesel from Vegetable Non edible oil	40
(Jatropha Curcas)	
3.3.1Methodology	
3.4 Biodiesel production from Sludge	
3.4.1 Sewage sludge oil extraction (Soxhult extraction)	40
3.4.1.1Transesterification	41
3.4.2 In situ transesterification	
3.4.2. Pre- treatmen of the samples	
3.4.2.2 Using Dry sample method	42
3.4.2.3 Using Wet sample method	42
3.4.3 Method of liquid to liquid on different types of sludge	
3.4.3.1 Method	
CHAPTER 4 ANAYLSIS OF RESULTS	
4.1 Introduction	
	•
4.2 Discussion of the composition of Fatty acid sample	
4.2.1 Edible and Non-edible oil (sunflower-jatropha)	44
4.3 Biodiesel Yield and its characteristics in comparison with	-1-
national and international standards	52
4.3.1 The biodiesel yield	•••
4.3.2 Sunflower	52
4.4.2.1 Density	
4.4.2.2The total acid value	52
4.4.2.3 Kinematic viscosity	
4.4.2.4 Cloud point	
4.4.2.5 Cetane Number	
4.4.2.6 Flash point	
4.3.3 Jatropha	3.
4.4.3.1 Density	
4.4.3.2The total acid value	54
4.4.3.3 Kinematic viscosity	
4.3.3.4 Cloud point	
4.3.3.5 Cetane Number	• • • •
4.3.3.6 Flash point	
noto i mon point	32

56

4.5 Biodiesel Yield and its characteristics in comparison wit	h
tional and international standards	
4.5.1 Biodiesel yield	
4.5.2 Home	
4.5.2.1 Density	
4.5.2.2The total acid value	••••••
4.5.3.3 Kinematic viscosity	
4.5.4.4 Cloud point	
4.5.4.5 Cetane Number	••••••
4.5.4.6 Flash point	
4.5.3 Chipcy waste cooking oil	
4.5.3.1 Density	••••••
4.5.3.3 Kinematic viscosity	
4.5.3.4 Cloud point	
4.5.3.5 Cetane Number	
4.5.3.6 Flash point	
4.6 Discussion of the composition of Fatty acid sample. sew	age
dge (primary-secondary)	
4.7 Biodiesel Yield and its characteristics in comparison wit	h
4.7 Biodiesel Yield and its characteristics in comparison wit tional and international standards	h
4.7 Biodiesel Yield and its characteristics in comparison wit tional and international standards. 4.7.1 Biodiesel yield	h
4.7 Biodiesel Yield and its characteristics in comparison wit tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge	h
4.7.2 Primary sludge 4.7.2.1 Density	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield. 4.7.2 Primary sludge. 4.7.2.1 Density. 4.7.2.2The total acid value. 4.7.2.3 Kinematic viscosity.	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield. 4.7.2 Primary sludge. 4.7.2.1 Density. 4.7.2.2The total acid value. 4.7.2.3 Kinematic viscosity. 4.7.2.4 Cloud point. 4.7.2.5 Cetane Number.	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge 4.7.3.1 Density	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield. 4.7.2 Primary sludge. 4.7.2.1 Density. 4.7.2.2The total acid value. 4.7.2.3 Kinematic viscosity. 4.7.2.4 Cloud point. 4.7.2.5 Cetane Number. 4.7.2.6 Flash point. 4.7.3 Secondary sludge. 4.7.3.1 Density. 4.7.3.2The total acid value.	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge 4.7.3.1 Density 4.7.3.2The total acid value 4.7.3.2The total acid value 4.7.3.3 Kinematic viscosity	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield. 4.7.2 Primary sludge. 4.7.2.1 Density. 4.7.2.2The total acid value. 4.7.2.3 Kinematic viscosity. 4.7.2.4 Cloud point. 4.7.2.5 Cetane Number. 4.7.2.6 Flash point. 4.7.3 Secondary sludge. 4.7.3.1 Density. 4.7.3.2The total acid value. 4.7.3.2The total acid value. 4.7.3.3 Kinematic viscosity. 4.7.3.4 Cloud point.	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge 4.7.3.1 Density 4.7.3.2The total acid value 4.7.3.3 Kinematic viscosity 4.7.3.4 Cloud point 4.7.3.5 Cetane Number	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards. 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2 The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge 4.7.3.1 Density 4.7.3.2 The total acid value 4.7.3.3 Kinematic viscosity 4.7.3.4 Cloud point 4.7.3.5 Cetane Number 4.7.3.5 Cetane Number 4.7.3.6 Flash point	h
4.7 Biodiesel Yield and its characteristics in comparison with tional and international standards 4.7.1 Biodiesel yield 4.7.2 Primary sludge 4.7.2.1 Density 4.7.2.2The total acid value 4.7.2.3 Kinematic viscosity 4.7.2.4 Cloud point 4.7.2.5 Cetane Number 4.7.2.6 Flash point 4.7.3 Secondary sludge 4.7.3.1 Density 4.7.3.2The total acid value 4.7.3.3 Kinematic viscosity 4.7.3.4 Cloud point 4.7.3.5 Cetane Number	and

oil and chipcy waste cooking oil	78
4.10 Comparison of fuel properties of biodiesel obtained from primary	
sludge and secondary sludge with sunflower oil ,jatropha oil , home	
waste cooking oil and chipcy waste cooking oil	
4.10.1 Density	78 78
4.10.2 The total acid value	78
4.10.3 Kinematic viscosity	78 79
4.10.4 Cloud point	
4.10.5 Cetane Number	79 70
4.10.6 Flash point	79 83
different process biodiesel production depend on production process	
(Conventional and Non-conventional)	83
4.11.1 Dry sludge	83
4.11.1.1 Soxhult extraction	83
4.11.1.2 Dried in-situ transesterification	85
4.11.1.2.1 Blended sludge	85
4.11.2.2 Collected dry sludge	86
4.11.2 Wet sludge in-situ transesterification	88
4.11.2.1 Primary sludge	88
4.11.2.2 Secondary sludge	90
4.11.2.3 Blended sludge	91
4.11.3 Liquid to Liquid transesterification	93
4.11.3.2 Secondary sludge	95
4.11.3.3 Blended sludge	93 96
4.12 Biodiesel potential of sewage sludge generated in wastewater	90
treatment plant of western 6th of October wastewater treatment plant,	0.5
Egypt	95
CHAPTER 5 CONCLUSION AND REEOMMENDATIONS	101
5.2 CONCLUSIONS	101
5.3 SCOPE FOR FUTURE STUDY	103
REFERNCES	104
APPENDIX A: Equipments used in characterized the biodiesel	
properties obtained from different organic sources	115
APPENDIX B: Biodiesel standards	
APPENDIX C: Stages of biodiesel production	119
ARABIC SUMMARY	121

List of Tables	Page
Table 1.1: comparsion of Biodisel emmsion by different grades	2
Table 4.1: The main fatty acids (wt%) in vegetable oil(sunflower)	45
Table 4.2: The main fatty acids (wt%) in vegetable oil (Jatropha)	46
Table 4.3: Fatty acid composition (area %) of fresh sunflower and	
Jatropha oils	47
Table 4.4: Fatty acid composition of the main fatty acids (wt%) of	
biodiesel obtained by transesterification of (sunflower)	49
Table 4.5: Fatty acid composition of the main fatty acids (wt%) of bio-	
diesel obtained by transesterification of (Jatropha)	50
Table 4.6: Fatty acid composition of the main fatty acids (wt%) of bio-	5 1
diesel obtained by transesterification of (sunflower-Jatropha)	51
Table 4.7: Physical and chemical characteristics of production	
obtained from (sunflower)compared to the local standards of petrodiesel fuel and American & European specifications	54
Table 4.8: Physical and chemical characteristics of production	51
obtained from (sunflower)compared to the local standards of	
petrodiesel fuel and American & European specifications	55
Table 4.9: Fatty acid composition of the main fatty acids (wt%) in	
vegetable oil (WcoHome)	57
Table 4.10: Fatty acid composition of the main fatty acids (wt%) in	
vegetable oil (WcoChipcy)	58
Table 4.11: Fatty acid composition of the main fatty acids (wt%) in waste	50
cooking oil (home-chipcy factory)	59
Table 4.12: Fatty acid composition of the main fatty acids (wt%) of	61
biodiesel obtained by transesterification of (WcoHome)	01
biodiesel obtained by transesterification of (WcoChipcy)	62
Table 4.14: Fatty acid composition of the main fatty acids (wt%) of	-
biodiesel obtained by transesterification of waste cooking oil (home-	
chipcy factory)	63
Table 4.15 Table 4.8: : Physical and chemical characteristics of	
production obtained from (sunflower)compared to the local standards	
of petrodiesel fuel and American & European specifications	65
Table 4.16: Table 4.8: : Physical and chemical characteristics of	
production obtained from (sunflower)compared to the local standards	67
of petrodiesel fuel and American & European specifications	07
Table 4.17: Fatty acid composition of the main fatty acids (wt%) of biodiesel obtained by dry in-situ transesterification of (Primary sludge).	69

Table 4.18: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by dry in-situ transesterification of Secondary sludge
Table 4.19: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by transesterification of waste cooking oil (primary-
secondary sludge)
Table 4.20: Table 4.8: : Physical and chemical characteristics of
production obtained from (sunflower)compared to the local standards
of petrodiesel fuel and American & European specifications
Table 4.21: Table 4.8: : Physical and chemical characteristics of
production obtained from (sunflower)compared to the local standards
of petrodiesel fuel and American & European specifications
Table 4.22: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained from (dried primary soxhult extraction oil - dried
blended sludge- dried collected sludge)
Table 4.23: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by dried primary Sludge
Table 4.24: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by dried blended Sludge
Table 4.25: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by dried collected Sludge
Table 4.26 :Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained from (wet primary sludge - secondary wet sludge-
blended wet sludge)
Table 4.27: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by Primary Sludge
Table 4.28: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by Secondary Sludge
Table 4.29: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by blended Sludge
Table 4.30:Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained from (primary liquid to liquid extraction - secondary
liquid to liquid extraction-blended liquid to liquid extraction)
Table 4.31 :Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by Primary Sludge
Table 4.32: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by Secondary Sludge
Table 4.33: Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by blended Sludge
Table 4.34:Estimation of yearly amounts of biodiesel production from
wastewater station western 6th of October,
Egypt)

List of Figures

Figure 2.1: Land area cultivated by Jatropha
Figure 2.2: Transesterification of triglycerides with alcohols
Figure 2.3:The transesterification reactions of vegetable oil with alcohol
to esters and glycerol
Figure 2.4: Formation of water during the esterification reaction
Figure 2.5: The saponification reaction
Figure 4.1: Fatty acid profile of the sunflower oil
Figure 4.2: Fatty acid profile of the Jatropha oil
Figure 4.3 comparison of fatty acid (wt %) content of sunflower oil and
Jatropha oil
Figure 4.4: Fatty acid profile of methyl ester product of the sunflower oil
Figure 4.5: Fatty acid profile of methyl ester product of the Jatropha oil.
Figure 4.6: Comparison of Fatty acid content of methyl ester product of
the (Sunflower-Jatropha)
Figure 4.7: Fatty acid profile of waste cooking oil
Figure 4.8: Fatty acid profile of the waste cooking oil (chipcy factory)
Figure 4.9: comparison of fatty acid (wt %) content of Home waste
cooking oil and chipcy factory waste cooking oil
Figure 4.10: Fatty acid profile of methyl ester product of the waste
cooking oil
Figure 4.11: Fatty acid profile of methyl ester product of the waste
cooking oil (chipcy factory)
Figure 4.12 :Fatty acid composition of the main fatty acids (wt%) of
biodiesel obtained by transesterification of waste cooking oil (home-
chipcy factory).
Figure 4.13: Fatty acid profile of methyl ester product of the dried
primary sludge
Figure 4.14: Fatty acid profile of methyl ester product of the dry secondary sludge
Figure 4.15: Fatty acid composition of methyl ester product of the
primary and secondary sludge
Figure 4.16: Fatty acid profile of methyl ester product of the primary
sludge, secondary sludge, sunflower oil and jatropha oil
Figure 4.17: density g/cm3
Figure 4.18:Total acid number (mg KOH/g)
Figure 4.19 : Kinematic Viscosity c St @ 40 o C.
Figure 4.20 : Cloud point oC
Figure 4.21 : Cetane number
Figure 4.22 : Flash point
Figure 4.23: Fatty acid profile of methyl ester product of the dried
rigure 4.23. ratty actu profile of methyrester product of the direct

primary Sludge by soxhult extraction
Figure 4.24 Fatty acid profile of methyl ester product of the dried
blended Sludge
Figure 4.25: Fatty acid profile of methyl ester product of the dried
collected Sludge
Figure 4.26: Fatty acid profile of methyl ester product of dried primary
sludge extracted by soxhult extraction oil process, dried blended in situ-
transesterification process and dried collected in situ- transesterification
process
Figure 4.27: Fatty acid profile of methyl ester product of the Primary
Sludge
Figure 4.28: Fatty acid profile of methyl ester product of the Secondary
Sludge
Figure 4.29: Fatty acid profile of methyl ester product of the blended
Sludge
Figure 4.30: Fatty acid content of methyl ester product of, primary wet
in situ- transesterification process, secondary in situ- transesterification
process and blended wet in situ- transesterification process
Figure 4.31 Fatty acid profile of methyl ester product of the Primary
Sludge
Figure 4.32 Fatty acid profile of methyl ester product of the Secondary
Sludge
Figure 4.33: Fatty acid profile of methyl ester product of the blended
Sludge
Figure 4.34: Fatty acid content of methyl ester product of, primary
liquid to liquid transesterification process, secondary liquid to liquid
transesterification process and blended liquid to liquid
transesterification process

Abstract

The global continuous growth of energy demand poses urgent problem due to the fossil fuels depletion, as they currently represent about 75% of all energy consumed worldwide. Energy demand has led the world to discover new secure energy sources that are renewable, environment-friendly, affordable and above all sustainable. From the point of view of protecting the global environment and concerns for long term energy security, it is necessary to develop alternative fuels with properties comparable to petroleum based fuels. Bio-diesel is a well known alternative fuel; its advantage resides in its ease of usage and integration with present engine models. The replacement of petroleum–derived diesel with bio-diesel reduces the green house gas emissions up to 40%. Bio-diesel is methyl or ethyl esters of fatty acid made from virgin oil, used vegetable oil and animal fat by transesterification reaction of triglycerides with methanol or ethanol in the presence of a catalyst. At present, the high cost of bio-diesel is the major obstacle for its commercialization. Approximately 75-80% of the total cost of bio-diesel production is attributed to raw feedstocks.

Transesterification of edible oil such as sunflower oil, non-edible oil as Jatropha oil, home waste cooking oil and chipcy cooking oil were carried out using two- steps process, Since vegetables oil contains high FFA, when a base homogeneous catalyst is used, FFA react with the catalyst to produce emulsified soap which inhibits biodiesel production. If an acid catalyst is applied, despite the saponification phenomenon is avoided, the acid has a less catalytic effect on the transesterification. It is very slow and needs a very high methanol to oil molar ratio. Therefore, a two-step process, esterification pre-treatment using an acid catalyst to remove FFA followed by base transesterification, was employed for the production of bio-diesel from vegetables oil.

The maximum bio-diesel obtained yields (g/g) of 97.23% ,96.54%, 95.37% and 96.38 % were achieved from sunflower oil , Jatropha oil, home waste cooking oil and chipcy cooking oil respectively .

One of the contending candidates is the wastewater sewage sludge due to its numerous advantages over others bio-diesel obtained by different production processes, It was found the maximum bio-diesel yield from primary and secondary sludge were 11.82 % and 2.82 % respectively, under the optimum production conditions. Furthermore, in-situ transesterification or direct transesterification eliminates the extraction step which could lead to a reduction in overall production cost of bio-diesel.

During the two-step process, the esterification and transesterification parameters were optimized to achieve high conversion of feedstock into bio-diesel . The produced bio-diesel was characterized and the conversion was calculated by GC , Fatty acids composition of sludge was compared with common bio-diesel feedstock such as vegetable oil (sunflower-jatropha) and waste cooking oil (home -chipcy factory). From that it is observed that majority of fatty acids in sludge are same as fatty acids of vegetable oil and waste cooking oil such as palmitic acid, oleic acid, linoleic acid.

The fuel properties of obtained bio-diesel were examined as per national and international standards such as the American Standard Test Methods (ASTM D-65716) specifications and European Union , DIN EN (14214) , to assess potential of bio-diesel as an alternative fuel.

Hence the different production methods , acid-base transesterification and in-situ transesterification were found to be very efficient to produce bio-diesel from the different organic feedstock. Thus, wastewater sewage sludge serve as a potential renewable raw-material for bio-diesel production.